You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/context/moe_context.py

152 lines
5.5 KiB

import torch
import torch.distributed as dist
from .parallel_mode import ParallelMode
def _check_sanity():
from colossalai.core import global_context as gpc
if gpc.tensor_parallel_size > 1 or gpc.pipeline_parallel_size > 1:
raise NotImplementedError("Moe is not compatible with tensor or "
"pipeline parallel at present.")
class MoeInfo:
"""Moe parallelism information, storing parallel sizes and groups.
"""
def __init__(self, ep_size: int, dp_size: int):
_check_sanity()
self.ep_size = ep_size
self.dp_size = dp_size
self.ep_group = None
# data parallel group for experts, since ep_group is different
# we may have different dp_group from get_group(ParallelMode.DATA)
self.dp_group = None
# Here we assume tensor parallel size = 1
# Otherwise, MoE can't be used
# Since TENSOR parallel group and DATA parallel group
# have been created, we can use them directly.
if ep_size == 1:
from colossalai.core import global_context as gpc
self.ep_group = gpc.get_group(ParallelMode.TENSOR)
self.dp_group = gpc.get_group(ParallelMode.DATA)
return
if dp_size == 1:
from colossalai.core import global_context as gpc
self.ep_group = gpc.get_group(ParallelMode.DATA)
self.dp_group = gpc.get_group(ParallelMode.TENSOR)
return
rank = dist.get_rank()
# Create expert parallel group
for i in range(dp_size):
ranks = [i * ep_size + j for j in range(ep_size)]
group = dist.new_group(ranks)
if rank in ranks:
self.ep_group = group
# Create data parallel group
for j in range(ep_size):
ranks = [i * ep_size + j for i in range(dp_size)]
group = dist.new_group(ranks)
if rank in ranks:
self.dp_group = group
class MoeContext:
"""MoE parallel context manager. This class manages different
parallel groups in MoE context and MoE loss in training.
"""
__instance = None
@staticmethod
def get_instance():
if MoeContext.__instance is None:
MoeContext.__instance = MoeContext()
return MoeContext.__instance
def __init__(self):
self.world_size = 1
# Users may want to set maximum expert parallel size smaller than the world size
# since very low bandwidth across nodes may constrain the performance of MoE
# When we have a maximum expert parallel size, we have a minimum data parallel size naturally
self.max_ep_size = 1
self.min_dp_size = 1
self.aux_loss = None
self.use_kernel_optim = True
self.has_setup = False
self._info_dict = dict()
@property
def information(self):
return self._info_dict
@property
def is_initialized(self):
return self.has_setup
def setup(self, seed: int, use_kernel_optim: bool = True):
assert not self.is_initialized, "MoE distributed context shouldn't be set up again"
_check_sanity()
assert torch.cuda.is_available(), "MoE requires to enable CUDA first"
self.world_size = dist.get_world_size()
from colossalai.core import global_context as gpc
self.max_ep_size = gpc.config.get('max_ep_size', self.world_size)
assert self.world_size % self.max_ep_size == 0, \
"Maximum epxert parallel size must be a factor of the number of GPUs"
self.min_dp_size = self.world_size // self.max_ep_size
# Enabling kernel optimization may raise error in some cases
# Users can close kernel optimization manually
self.use_kernel_optim = use_kernel_optim
from .random import moe_set_seed
moe_set_seed(seed)
self.has_setup = True
def get_info(self, num_experts: int):
"""Automatically deploys experts and returns parallel infomation about
distributed communication groups.
"""
gt_flag = num_experts % self.max_ep_size == 0 # check whether num_experts is greater
lt_flag = self.max_ep_size % num_experts == 0 # check whether num_experts is less
assert gt_flag or lt_flag, "Automatic experts placement do not support such situation right now."
# If the number of experts is greater than maximum expert parallel size,
# there are multiple experts in each GPU and each GPU has different experts
# So it's data parallel size is 1
# Otherwise, there is only one expert in each GPU
# The data parallel size should be calculated
dp_size = 1 if gt_flag else self.max_ep_size // num_experts
ep_size = self.max_ep_size // dp_size
# Calculate the number of experts for each GPU
num_local_experts = 1 if lt_flag else num_experts // self.max_ep_size
# Don't forget to multiply minimum data parallel size
dp_size *= self.min_dp_size
if not (ep_size in self.information):
self.information[ep_size] = MoeInfo(ep_size, dp_size)
return num_local_experts, self.information[ep_size]
def set_kernel_not_use(self):
self.use_kernel_optim = False
def reset_loss(self):
self.aux_loss = 0
def add_loss(self, loss):
self.aux_loss += loss
def get_loss(self):
return self.aux_loss