ColossalAI/colossalai/auto_parallel/meta_profiler/meta_registry/norm.py

101 lines
6.1 KiB
Python
Raw Normal View History

from typing import Callable, Dict, List, Tuple, Union
import torch
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
MemoryCost,
OperationData,
OperationDataType,
ShardingStrategy,
StrategiesVector,
TrainCycleItem,
)
from colossalai.fx.profiler.memory_utils import activation_size
from colossalai.fx.profiler.opcount import flop_mapping
from colossalai.tensor.sharding_spec import ShardingSpec
from ..registry import meta_register
__all__ = ['batchnormnd_meta_info']
@meta_register.register(torch.nn.BatchNorm1d)
@meta_register.register(torch.nn.BatchNorm2d)
@meta_register.register(torch.nn.BatchNorm3d)
def batchnormnd_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
"""BatchNorm1d, BatchNorm2d, BatchNorm3d, meta info generator
The aten graph of BatchNorm2d is like
graph():
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
%cudnn_batch_norm_default : [#users=4] = call_function[target=torch.ops.aten.cudnn_batch_norm.default](args = (%input_2, None, None, None, None, None, None, None), kwargs = {})
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%cudnn_batch_norm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_default,), kwargs = {})
%detach_default_2 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_default,), kwargs = {})
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_default,), kwargs = {})
%cudnn_batch_norm_backward_default : [#users=3] = call_function[target=torch.ops.aten.cudnn_batch_norm_backward.default](args = (%detach_default, %zeros_like_default, None, None, None, %detach_default_1, %detach_default_2, None, %detach_default_3), kwargs = {})
%detach_default_4 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_backward_default,), kwargs = {})
%detach_default_5 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_4,), kwargs = {})
%detach_default_6 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_backward_default,), kwargs = {})
%detach_default_7 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_6,), kwargs = {})
%detach_default_8 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_backward_default,), kwargs = {})
%detach_default_9 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_8,), kwargs = {})
Returns:
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
"""
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
weight_tensor = next(filter(lambda x: x.name == "weight", args)).data
bias_tensor = next(filter(lambda x: x.name == "bias", args)).data
mean_tensor = next(filter(lambda x: x.name == "running_mean", args)).data
var_tensor = next(filter(lambda x: x.name == "running_var", args)).data
num_batch = next(filter(lambda x: x.name == "num_batches_tracked", args)).data
# construct fwd args
# the fwd inputs are input, weight, bias, running_mean, running_var and some other args
# indicating the status of the module
# the fwd outputs are output, saved mean, saved inv std and num batches tracked
fwd_in_args = [input_tensor, weight_tensor, bias_tensor, mean_tensor, var_tensor, True, 0.1, 1e-5]
fwd_out_args = [output_tensor, mean_tensor, var_tensor, num_batch]
# construct bwd args
# the bwd inputs are upstream grad, input, weight, running_mean, running_var, saved mean,
# saved inv std and some other args indicating the status of the module
# the bwd outputs are input grad, weight grad and bias grad
bwd_in_args = [
output_tensor, output_tensor, weight_tensor, mean_tensor, var_tensor, mean_tensor, var_tensor, 1e-5, num_batch
]
bwd_out_args = [input_tensor, weight_tensor, bias_tensor]
# calculate cost
fwd_compute_cost = flop_mapping[torch.ops.aten.cudnn_batch_norm.default](fwd_in_args, fwd_out_args)
bwd_compute_cost = flop_mapping[torch.ops.aten.cudnn_batch_norm_backward.default](bwd_in_args, bwd_out_args)
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
# calculate memory cost
# the fwd activation cost is output plus saved mean and saved inv std
fwd_memory_cost = MemoryCost(activation=activation_size([output_tensor, mean_tensor, var_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
temp=0,
buffer=activation_size([mean_tensor, var_tensor]))
# the bwd memory cost is quite tricky here, BatchNorm will remove saved mean
# and saved inv std during backward phase
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor]),
parameter=activation_size([weight_tensor, bias_tensor]),
temp=activation_size([mean_tensor, var_tensor]),
buffer=activation_size([mean_tensor, var_tensor]))
# total cost is the sum of forward and backward cost
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
# store fwd_in
fwd_in = [input_tensor]
return compute_cost, memory_cost, fwd_in