mirror of https://github.com/hpcaitech/ColossalAI
[autoparallel] add batch norm metainfo (#1815)
* [fx] metainfo class for auto parallel * [fx] add unit test for linear metainfo * [fx] fix bwd param for linear * [fx] modify unit test * [fx] modify unit test * [fx] modify import * [fx] modify import * [fx] modify import * [fx] move meta profiler to auto parallel * [fx] add conv metainfo class * [fx] restore profiler * [fx] restore meta profiler * [autoparallel] modify unit test * [fx] modify unit test * [autoparallel] add batchnorm metainfo class * [autoparallel] fix batchnorm unit test function declaration * [fx] restore profilerpull/1825/head
parent
a648d061ba
commit
629172b319
|
@ -1,2 +1,3 @@
|
|||
from .conv import *
|
||||
from .linear import *
|
||||
from .norm import *
|
||||
|
|
|
@ -0,0 +1,100 @@
|
|||
from typing import Callable, Dict, List, Tuple, Union
|
||||
|
||||
import torch
|
||||
|
||||
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
||||
MemoryCost,
|
||||
OperationData,
|
||||
OperationDataType,
|
||||
ShardingStrategy,
|
||||
StrategiesVector,
|
||||
TrainCycleItem,
|
||||
)
|
||||
from colossalai.fx.profiler.memory_utils import activation_size
|
||||
from colossalai.fx.profiler.opcount import flop_mapping
|
||||
from colossalai.tensor.sharding_spec import ShardingSpec
|
||||
|
||||
from ..registry import meta_register
|
||||
|
||||
__all__ = ['batchnormnd_meta_info']
|
||||
|
||||
|
||||
@meta_register.register(torch.nn.BatchNorm1d)
|
||||
@meta_register.register(torch.nn.BatchNorm2d)
|
||||
@meta_register.register(torch.nn.BatchNorm3d)
|
||||
def batchnormnd_meta_info(*args) -> Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]:
|
||||
"""BatchNorm1d, BatchNorm2d, BatchNorm3d, meta info generator
|
||||
The aten graph of BatchNorm2d is like
|
||||
|
||||
graph():
|
||||
%input_2 : [#users=2] = placeholder[target=placeholder](default=)
|
||||
%cudnn_batch_norm_default : [#users=4] = call_function[target=torch.ops.aten.cudnn_batch_norm.default](args = (%input_2, None, None, None, None, None, None, None), kwargs = {})
|
||||
%zeros_like_default : [#users=1] = call_function[target=torch.ops.aten.zeros_like.default](args = (%cudnn_batch_norm_default,), kwargs = {dtype: None, layout: None, device: None, pin_memory: None})
|
||||
%detach_default : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%input_2,), kwargs = {})
|
||||
%detach_default_1 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_default,), kwargs = {})
|
||||
%detach_default_2 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_default,), kwargs = {})
|
||||
%detach_default_3 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_default,), kwargs = {})
|
||||
%cudnn_batch_norm_backward_default : [#users=3] = call_function[target=torch.ops.aten.cudnn_batch_norm_backward.default](args = (%detach_default, %zeros_like_default, None, None, None, %detach_default_1, %detach_default_2, None, %detach_default_3), kwargs = {})
|
||||
%detach_default_4 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_backward_default,), kwargs = {})
|
||||
%detach_default_5 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_4,), kwargs = {})
|
||||
%detach_default_6 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_backward_default,), kwargs = {})
|
||||
%detach_default_7 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_6,), kwargs = {})
|
||||
%detach_default_8 : [#users=1] = call_function[target=torch.ops.aten.detach.default](args = (%cudnn_batch_norm_backward_default,), kwargs = {})
|
||||
%detach_default_9 : [#users=0] = call_function[target=torch.ops.aten.detach.default](args = (%detach_default_8,), kwargs = {})
|
||||
Returns:
|
||||
Tuple[TrainCycleItem, TrainCycleItem, List[torch.Tensor]]: compute cost, memory cost and forward inputs
|
||||
"""
|
||||
|
||||
input_tensor = next(filter(lambda x: x.type == OperationDataType.ARG, args)).data
|
||||
output_tensor = next(filter(lambda x: x.type == OperationDataType.OUTPUT, args)).data
|
||||
weight_tensor = next(filter(lambda x: x.name == "weight", args)).data
|
||||
bias_tensor = next(filter(lambda x: x.name == "bias", args)).data
|
||||
mean_tensor = next(filter(lambda x: x.name == "running_mean", args)).data
|
||||
var_tensor = next(filter(lambda x: x.name == "running_var", args)).data
|
||||
num_batch = next(filter(lambda x: x.name == "num_batches_tracked", args)).data
|
||||
|
||||
# construct fwd args
|
||||
# the fwd inputs are input, weight, bias, running_mean, running_var and some other args
|
||||
# indicating the status of the module
|
||||
# the fwd outputs are output, saved mean, saved inv std and num batches tracked
|
||||
fwd_in_args = [input_tensor, weight_tensor, bias_tensor, mean_tensor, var_tensor, True, 0.1, 1e-5]
|
||||
fwd_out_args = [output_tensor, mean_tensor, var_tensor, num_batch]
|
||||
|
||||
# construct bwd args
|
||||
# the bwd inputs are upstream grad, input, weight, running_mean, running_var, saved mean,
|
||||
# saved inv std and some other args indicating the status of the module
|
||||
# the bwd outputs are input grad, weight grad and bias grad
|
||||
bwd_in_args = [
|
||||
output_tensor, output_tensor, weight_tensor, mean_tensor, var_tensor, mean_tensor, var_tensor, 1e-5, num_batch
|
||||
]
|
||||
bwd_out_args = [input_tensor, weight_tensor, bias_tensor]
|
||||
|
||||
# calculate cost
|
||||
fwd_compute_cost = flop_mapping[torch.ops.aten.cudnn_batch_norm.default](fwd_in_args, fwd_out_args)
|
||||
bwd_compute_cost = flop_mapping[torch.ops.aten.cudnn_batch_norm_backward.default](bwd_in_args, bwd_out_args)
|
||||
compute_cost = TrainCycleItem(fwd=fwd_compute_cost, bwd=bwd_compute_cost, total=fwd_compute_cost + bwd_compute_cost)
|
||||
|
||||
# calculate memory cost
|
||||
# the fwd activation cost is output plus saved mean and saved inv std
|
||||
fwd_memory_cost = MemoryCost(activation=activation_size([output_tensor, mean_tensor, var_tensor]),
|
||||
parameter=activation_size([weight_tensor, bias_tensor]),
|
||||
temp=0,
|
||||
buffer=activation_size([mean_tensor, var_tensor]))
|
||||
|
||||
# the bwd memory cost is quite tricky here, BatchNorm will remove saved mean
|
||||
# and saved inv std during backward phase
|
||||
bwd_memory_cost = MemoryCost(activation=activation_size([input_tensor]),
|
||||
parameter=activation_size([weight_tensor, bias_tensor]),
|
||||
temp=activation_size([mean_tensor, var_tensor]),
|
||||
buffer=activation_size([mean_tensor, var_tensor]))
|
||||
|
||||
# total cost is the sum of forward and backward cost
|
||||
total_cost = MemoryCost(activation=fwd_memory_cost.activation + bwd_memory_cost.activation,
|
||||
parameter=fwd_memory_cost.parameter + bwd_memory_cost.parameter)
|
||||
|
||||
memory_cost = TrainCycleItem(fwd=fwd_memory_cost, bwd=bwd_memory_cost, total=total_cost)
|
||||
|
||||
# store fwd_in
|
||||
fwd_in = [input_tensor]
|
||||
|
||||
return compute_cost, memory_cost, fwd_in
|
|
@ -0,0 +1,61 @@
|
|||
from functools import partial
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn as nn
|
||||
|
||||
from colossalai.device.device_mesh import DeviceMesh
|
||||
from colossalai.fx import ColoGraphModule, ColoTracer
|
||||
from colossalai.initialize import launch
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.testing.pytest_wrapper import run_on_environment_flag
|
||||
from colossalai.testing.utils import parameterize, rerun_if_address_is_in_use
|
||||
from colossalai.utils import free_port
|
||||
from tests.test_auto_parallel.test_tensor_shard.test_metainfo.utils import mem_test_for_node_strategy
|
||||
|
||||
|
||||
def _batchnorm_module_mem_test(rank, world_size, port):
|
||||
"""This function is for conv memory test
|
||||
Test and print real memory cost and estimated, this test will not be executed except with the tag AUTO_PARALLEL
|
||||
|
||||
Args:
|
||||
Args:
|
||||
rank: device rank
|
||||
bias: indicate whether conv module need bias
|
||||
world_size: number of devices
|
||||
port: port for initializing process group
|
||||
"""
|
||||
disable_existing_loggers()
|
||||
launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
model = nn.Sequential(nn.BatchNorm2d(128)).cuda()
|
||||
input = torch.rand(4, 128, 64, 64).cuda()
|
||||
input.requires_grad = True
|
||||
physical_mesh_id = torch.arange(0, 4)
|
||||
mesh_shape = (2, 2)
|
||||
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
||||
|
||||
# index of conv node in computation graph
|
||||
node_index = 1
|
||||
# total number of conv strategies
|
||||
strategy_number = 4
|
||||
mem_test_for_node_strategy(rank=rank,
|
||||
model=model,
|
||||
device_mesh=device_mesh,
|
||||
node_index=node_index,
|
||||
strategy_number=strategy_number,
|
||||
input_args=[input],
|
||||
meta_arg_names=['input'])
|
||||
|
||||
|
||||
@run_on_environment_flag(name='AUTO_PARALLEL')
|
||||
@pytest.mark.dist
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_batchnorm_meta_concrete_info_match():
|
||||
world_size = 4
|
||||
run_func_module = partial(_batchnorm_module_mem_test, world_size=world_size, port=free_port())
|
||||
mp.spawn(run_func_module, nprocs=world_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_batchnorm_meta_concrete_info_match()
|
Loading…
Reference in New Issue