2022-03-02 09:15:54 +00:00
|
|
|
import torch
|
|
|
|
import colossalai
|
|
|
|
import copy
|
|
|
|
import pytest
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
from colossalai.zero import ShardedOptimizer
|
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
|
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
from functools import partial
|
2022-03-11 06:09:09 +00:00
|
|
|
from common import allclose
|
|
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
2022-03-02 09:15:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
def check_completely_equal(a, b):
|
|
|
|
"""
|
|
|
|
This function checks if two tensors are completely equal
|
|
|
|
"""
|
|
|
|
assert torch.all(a == b), f'a = {a}, b = {b}'
|
|
|
|
|
|
|
|
|
|
|
|
def check_sharded_param_consistency():
|
|
|
|
"""
|
|
|
|
In this test, we want to test whether zero stage 1 and 2
|
|
|
|
deliver the same numerical results despite different communication
|
|
|
|
pattern
|
|
|
|
|
|
|
|
we use these prefixes to differentiate the zero stage
|
|
|
|
oss: partition optimizer states
|
|
|
|
pg: partition gradients and optimizer states
|
|
|
|
|
|
|
|
"""
|
2022-03-11 06:09:09 +00:00
|
|
|
test_models = ['repeated_computed_layers', 'resnet18', 'nested_model']
|
|
|
|
|
|
|
|
for name in test_models:
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(name)
|
|
|
|
model_builder, train_dataloader, *_ = get_components_func()
|
|
|
|
|
|
|
|
# create model
|
|
|
|
oss_model = model_builder(checkpoint=True).cuda().half()
|
|
|
|
pg_model = copy.deepcopy(oss_model)
|
|
|
|
|
|
|
|
# create optimizer
|
|
|
|
oss_optimizer = torch.optim.Adam(oss_model.parameters(), lr=0.001)
|
|
|
|
pg_optimizer = torch.optim.Adam(pg_model.parameters(), lr=0.001)
|
|
|
|
oss_optimizer = ShardedOptimizer(oss_optimizer, overlap_communication=True, initial_scale=1, clip_grad_norm=0.0)
|
|
|
|
pg_optimizer = ShardedOptimizer(pg_optimizer,
|
|
|
|
overlap_communication=True,
|
|
|
|
partition_grad=True,
|
|
|
|
initial_scale=1,
|
|
|
|
clip_grad_norm=0.0)
|
|
|
|
|
|
|
|
# create
|
|
|
|
data, label = next(iter(train_dataloader))
|
|
|
|
input_data = data.cuda().half()
|
|
|
|
|
|
|
|
# forward
|
|
|
|
oss_output = oss_model(input_data)
|
|
|
|
pg_output = pg_model(input_data)
|
|
|
|
check_completely_equal(oss_output, pg_output)
|
|
|
|
|
|
|
|
# backward
|
|
|
|
oss_optimizer.backward(oss_output.mean().float())
|
|
|
|
pg_optimizer.backward(pg_output.mean().float())
|
|
|
|
|
|
|
|
# check grad
|
|
|
|
# as this param is small, the backward reduction
|
|
|
|
# will not be fired
|
|
|
|
for oss_param, pg_param in zip(oss_model.parameters(), pg_model.parameters()):
|
|
|
|
check_completely_equal(oss_param.grad, pg_param.grad)
|
|
|
|
|
|
|
|
# step
|
|
|
|
oss_optimizer.sync_grad()
|
|
|
|
pg_optimizer.sync_grad()
|
|
|
|
|
|
|
|
# step
|
|
|
|
oss_optimizer.step()
|
|
|
|
pg_optimizer.step()
|
|
|
|
|
|
|
|
# check updated param
|
|
|
|
for oss_param, pg_param in zip(oss_model.parameters(), pg_model.parameters()):
|
|
|
|
check_completely_equal(oss_param, pg_param)
|
2022-03-02 09:15:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
def check_sharded_optim_against_torch_ddp():
|
|
|
|
"""
|
|
|
|
In this test, two pairs of model and optimizers are created.
|
|
|
|
1. zero: use sharded optimizer and fp16 parameters
|
|
|
|
2. torch: use torch DDP and fp32 parameters
|
|
|
|
|
|
|
|
We feed these two sets of models with the same input and check if the
|
|
|
|
differences in model output and updated parameters are within tolerance.
|
|
|
|
"""
|
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
test_models = ['repeated_computed_layers', 'resnet18', 'nested_model']
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
for name in test_models:
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(name)
|
|
|
|
model_builder, train_dataloader, *_ = get_components_func()
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# create model
|
|
|
|
zero_model = model_builder(checkpoint=True).cuda()
|
|
|
|
torch_model = copy.deepcopy(zero_model)
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
zero_model = zero_model.half()
|
|
|
|
torch_model = DDP(torch_model.cuda())
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# create optimizer
|
|
|
|
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=0.001)
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# we only test stage 1 here
|
|
|
|
# in `check_sharded_param_consistency.py`, we will test whether
|
|
|
|
# level 1 and 2 will produce exactly the same results
|
|
|
|
zero_optimizer = ShardedOptimizer(zero_optimizer,
|
|
|
|
overlap_communication=True,
|
|
|
|
initial_scale=1,
|
|
|
|
clip_grad_norm=0.0)
|
|
|
|
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=0.001)
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# create
|
|
|
|
input_data, _ = next(iter(train_dataloader))
|
|
|
|
input_data = input_data.cuda()
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# zero-dp forward
|
|
|
|
zero_output = zero_model(input_data.half())
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# torch-ddp forward
|
|
|
|
torch_output = torch_model(input_data)
|
|
|
|
allclose(zero_output, torch_output.half())
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# zero-dp backward
|
|
|
|
zero_optimizer.backward(zero_output.mean().float())
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# torch-ddp backward
|
|
|
|
torch_output.mean().backward()
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# check grad
|
|
|
|
for oss_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
|
|
|
|
allclose(oss_param.grad, torch_param.grad.half())
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# zero-dp step
|
|
|
|
zero_optimizer.sync_grad()
|
|
|
|
zero_optimizer.step()
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# torch ddp step
|
|
|
|
torch_optimizer.step()
|
2022-03-02 09:15:54 +00:00
|
|
|
|
2022-03-11 06:09:09 +00:00
|
|
|
# check updated param
|
|
|
|
for oss_param, torch_param in zip(zero_model.parameters(), torch_model.parameters()):
|
|
|
|
allclose(oss_param, torch_param.half())
|
2022-03-02 09:15:54 +00:00
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
|
|
|
|
|
|
|
check_sharded_optim_against_torch_ddp()
|
|
|
|
check_sharded_param_consistency()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
def test_sharded_optim():
|
|
|
|
world_size = 2
|
|
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_sharded_optim()
|