mirror of https://github.com/hpcaitech/ColossalAI
179 lines
5.4 KiB
Python
179 lines
5.4 KiB
Python
|
import torch
|
||
|
import colossalai
|
||
|
import copy
|
||
|
import pytest
|
||
|
import torch.multiprocessing as mp
|
||
|
import torch.nn as nn
|
||
|
from colossalai.zero import ShardedOptimizer
|
||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||
|
|
||
|
from colossalai.utils import free_port
|
||
|
from functools import partial
|
||
|
|
||
|
|
||
|
def check_equal(a, b):
|
||
|
"""
|
||
|
This function checks if two tensors are equal within tolerance
|
||
|
"""
|
||
|
assert torch.allclose(a.float(), b.float(), rtol=1e-4, atol=1e-3), f'a = {a}, b = {b}'
|
||
|
|
||
|
|
||
|
def check_completely_equal(a, b):
|
||
|
"""
|
||
|
This function checks if two tensors are completely equal
|
||
|
"""
|
||
|
assert torch.all(a == b), f'a = {a}, b = {b}'
|
||
|
|
||
|
|
||
|
def check_sharded_param_consistency():
|
||
|
"""
|
||
|
In this test, we want to test whether zero stage 1 and 2
|
||
|
deliver the same numerical results despite different communication
|
||
|
pattern
|
||
|
|
||
|
we use these prefixes to differentiate the zero stage
|
||
|
oss: partition optimizer states
|
||
|
pg: partition gradients and optimizer states
|
||
|
|
||
|
"""
|
||
|
|
||
|
# create layers
|
||
|
oss_linear1 = nn.Linear(128, 256)
|
||
|
oss_linear2 = nn.Linear(256, 512)
|
||
|
|
||
|
# create model
|
||
|
oss_model = nn.Sequential(oss_linear1, oss_linear2)
|
||
|
pg_model = copy.deepcopy(oss_model)
|
||
|
|
||
|
oss_model = oss_model.cuda().half()
|
||
|
pg_model = pg_model.cuda().half()
|
||
|
|
||
|
# create optimizer
|
||
|
oss_optimizer = torch.optim.Adam(oss_model.parameters(), lr=0.001)
|
||
|
pg_optimizer = torch.optim.Adam(pg_model.parameters(), lr=0.001)
|
||
|
oss_optimizer = ShardedOptimizer(oss_optimizer, overlap_communication=True, initial_scale=1, clip_grad_norm=0.0)
|
||
|
pg_optimizer = ShardedOptimizer(pg_optimizer,
|
||
|
overlap_communication=True,
|
||
|
partition_grad=True,
|
||
|
initial_scale=1,
|
||
|
clip_grad_norm=0.0)
|
||
|
|
||
|
# create
|
||
|
input_data = torch.rand(32, 128).cuda().half()
|
||
|
|
||
|
# forward
|
||
|
oss_output = oss_model(input_data)
|
||
|
pg_output = pg_model(input_data)
|
||
|
check_completely_equal(oss_output, pg_output)
|
||
|
|
||
|
# backward
|
||
|
oss_optimizer.backward(oss_output.mean().float())
|
||
|
pg_optimizer.backward(pg_output.mean().float())
|
||
|
|
||
|
# check grad
|
||
|
# as this param is small, the backward reduction
|
||
|
# will not be fired
|
||
|
oss_linear1_grad = oss_model[0].weight.grad
|
||
|
oss_linear2_grad = oss_model[1].weight.grad
|
||
|
pg_linear1_grad = pg_model[0].weight.grad
|
||
|
pg_linear2_grad = pg_model[1].weight.grad
|
||
|
check_completely_equal(oss_linear1_grad, pg_linear1_grad)
|
||
|
check_completely_equal(oss_linear2_grad, pg_linear2_grad)
|
||
|
|
||
|
# step
|
||
|
oss_optimizer.sync_grad()
|
||
|
pg_optimizer.sync_grad()
|
||
|
|
||
|
# step
|
||
|
oss_optimizer.step()
|
||
|
pg_optimizer.step()
|
||
|
|
||
|
# check updated param
|
||
|
check_completely_equal(oss_model[0].weight, pg_model[0].weight)
|
||
|
check_completely_equal(oss_model[1].weight, pg_model[1].weight)
|
||
|
|
||
|
|
||
|
def check_sharded_optim_against_torch_ddp():
|
||
|
"""
|
||
|
In this test, two pairs of model and optimizers are created.
|
||
|
1. zero: use sharded optimizer and fp16 parameters
|
||
|
2. torch: use torch DDP and fp32 parameters
|
||
|
|
||
|
We feed these two sets of models with the same input and check if the
|
||
|
differences in model output and updated parameters are within tolerance.
|
||
|
"""
|
||
|
|
||
|
# create layer
|
||
|
zero_linear1 = nn.Linear(128, 256)
|
||
|
zero_linear2 = nn.Linear(256, 512)
|
||
|
|
||
|
# create model
|
||
|
zero_model = nn.Sequential(zero_linear1, zero_linear2)
|
||
|
torch_model = copy.deepcopy(zero_model)
|
||
|
|
||
|
zero_model = zero_model.cuda().half()
|
||
|
torch_model = DDP(torch_model.cuda())
|
||
|
|
||
|
# create optimizer
|
||
|
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=0.001)
|
||
|
|
||
|
# we only test stage 1 here
|
||
|
# in `check_sharded_param_consistency.py`, we will test whether
|
||
|
# level 1 and 2 will produce exactly the same results
|
||
|
zero_optimizer = ShardedOptimizer(zero_optimizer, overlap_communication=True, initial_scale=1, clip_grad_norm=0.0)
|
||
|
|
||
|
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=0.001)
|
||
|
|
||
|
# create
|
||
|
input_data = torch.rand(32, 128).cuda()
|
||
|
|
||
|
# zero-dp forward
|
||
|
zero_output = zero_model(input_data.half())
|
||
|
|
||
|
# torch-ddp forward
|
||
|
torch_output = torch_model(input_data)
|
||
|
check_equal(zero_output, torch_output)
|
||
|
|
||
|
# zero-dp backward
|
||
|
zero_optimizer.backward(zero_output.mean().float())
|
||
|
|
||
|
# torch-ddp backward
|
||
|
torch_output.mean().backward()
|
||
|
|
||
|
# check grad
|
||
|
zero_linear1_grad = zero_model[0].weight.grad
|
||
|
zero_linear2_grad = zero_model[1].weight.grad
|
||
|
torch_linear1_grad = torch_model.module[0].weight.grad
|
||
|
torch_linear2_grad = torch_model.module[1].weight.grad
|
||
|
check_equal(zero_linear1_grad, torch_linear1_grad)
|
||
|
check_equal(zero_linear2_grad, torch_linear2_grad)
|
||
|
|
||
|
# zero-dp step
|
||
|
zero_optimizer.sync_grad()
|
||
|
zero_optimizer.step()
|
||
|
|
||
|
# torch ddp step
|
||
|
torch_optimizer.step()
|
||
|
|
||
|
# check updated param
|
||
|
check_equal(zero_model[0].weight, torch_model.module[0].weight)
|
||
|
check_equal(zero_model[1].weight, torch_model.module[1].weight)
|
||
|
|
||
|
|
||
|
def run_dist(rank, world_size, port):
|
||
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||
|
|
||
|
check_sharded_optim_against_torch_ddp()
|
||
|
check_sharded_param_consistency()
|
||
|
|
||
|
|
||
|
@pytest.mark.dist
|
||
|
def test_sharded_optim():
|
||
|
world_size = 2
|
||
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||
|
mp.spawn(run_func, nprocs=world_size)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_sharded_optim()
|