mirror of https://github.com/hpcaitech/ColossalAI
120 lines
5.0 KiB
Python
120 lines
5.0 KiB
Python
|
import torch
|
||
|
from torch.fx import GraphModule
|
||
|
import torch.nn as nn
|
||
|
import pytest
|
||
|
|
||
|
from colossalai.fx.proxy import ColoProxy
|
||
|
from colossalai.fx.tracer.tracer import ColoTracer
|
||
|
from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec
|
||
|
from colossalai.auto_parallel.solver.op_handler.batch_norm_handler import BatchNormHandler
|
||
|
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||
|
from colossalai.device.device_mesh import DeviceMesh
|
||
|
|
||
|
|
||
|
class BNModel(nn.Module):
|
||
|
|
||
|
def __init__(self, c):
|
||
|
super().__init__()
|
||
|
self.bn = nn.BatchNorm2d(c)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = x * 2
|
||
|
x = self.bn(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def test_bn_handler():
|
||
|
physical_mesh_id = torch.arange(0, 4)
|
||
|
mesh_shape = (2, 2)
|
||
|
# [[0, 1]
|
||
|
# [2, 3]]
|
||
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
|
||
|
entire_shape = torch.Size((4, 16, 64, 64))
|
||
|
shape_consistency_manager = ShapeConsistencyManager()
|
||
|
|
||
|
tracer = ColoTracer()
|
||
|
model = BNModel(16)
|
||
|
input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')}
|
||
|
# graph():
|
||
|
# %x : torch.Tensor [#users=1] = placeholder[target=x]
|
||
|
# %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {})
|
||
|
# %bn : [#users=1] = call_module[target=bn](args = (%mul,), kwargs = {})
|
||
|
# return bn
|
||
|
graph = tracer.trace(root=model, meta_args=input_sample)
|
||
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
||
|
gm.recompile()
|
||
|
# [x, mul, bn, output]
|
||
|
nodes = [node for node in gm.graph.nodes]
|
||
|
|
||
|
# find the sharding strategies for the input node of the bn node
|
||
|
# strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]]
|
||
|
strategies_vector_for_input = StrategiesVector(nodes[1])
|
||
|
sharding_option = (None, 0, 1)
|
||
|
for first_sharding_index in sharding_option:
|
||
|
for second_sharding_index in sharding_option:
|
||
|
if first_sharding_index is not None and second_sharding_index == first_sharding_index:
|
||
|
continue
|
||
|
if first_sharding_index is None:
|
||
|
first_dim_spec = _DimSpec([])
|
||
|
else:
|
||
|
first_dim_spec = _DimSpec([first_sharding_index])
|
||
|
|
||
|
if second_sharding_index is None:
|
||
|
second_dim_spec = _DimSpec([])
|
||
|
else:
|
||
|
second_dim_spec = _DimSpec([second_sharding_index])
|
||
|
|
||
|
replica_dim_spec = _DimSpec([])
|
||
|
sharding_sequence = [first_dim_spec, second_dim_spec, replica_dim_spec, replica_dim_spec]
|
||
|
sharding_spec = ShardingSpec(device_mesh=device_mesh,
|
||
|
entire_shape=entire_shape,
|
||
|
sharding_sequence=sharding_sequence)
|
||
|
strategy_name = str(sharding_spec.sharding_sequence)
|
||
|
sharding_strategy = ShardingStrategy(name=strategy_name, output_sharding_spec=sharding_spec)
|
||
|
strategies_vector_for_input.append(sharding_strategy)
|
||
|
setattr(nodes[1], 'strategies_vector', strategies_vector_for_input)
|
||
|
|
||
|
# generate bn strategy
|
||
|
strategies_vector = StrategiesVector(node=nodes[2])
|
||
|
bn_handler = BatchNormHandler(node=nodes[2],
|
||
|
device_mesh=device_mesh,
|
||
|
strategies_vector=strategies_vector,
|
||
|
shape_consistency_manager=shape_consistency_manager)
|
||
|
bn_handler.register_strategy()
|
||
|
# ['RS0 = RS0 x S0', 'S1S0 = RS0 x S0', 'RS1 = RS1 x S1', 'S0S1 = RS1 x S1', 'RR = RR x R', 'S0R = RR x R', 'S1R = RR x R', 'S01R = RR x R', 'RS01 = RS01 x S01',
|
||
|
# 'S0R = S0R x R WITH SYNC_BN', 'S1R = S1R x R WITH SYNC_BN', 'S0S1 = S0S1 x S1 WITH SYNC_BN', 'S1S0 = S1S0 x S0 WITH SYNC_BN', 'S01R = S01R x R WITH SYNC_BN']
|
||
|
strategy_name_list = [strategy.name for strategy in bn_handler.strategies_vector]
|
||
|
|
||
|
# RS = RS x S and strategies based on it, such as
|
||
|
# SS = RS x S
|
||
|
assert 'RS0 = RS0 x S0' in strategy_name_list
|
||
|
assert 'S1S0 = RS0 x S0' in strategy_name_list
|
||
|
assert 'RS1 = RS1 x S1' in strategy_name_list
|
||
|
assert 'S0S1 = RS1 x S1' in strategy_name_list
|
||
|
|
||
|
# RR = RR x R and strategies based on it, such as
|
||
|
# SR = SR x R
|
||
|
assert 'RR = RR x R' in strategy_name_list
|
||
|
assert 'S0R = RR x R' in strategy_name_list
|
||
|
assert 'S1R = RR x R' in strategy_name_list
|
||
|
assert 'S01R = RR x R' in strategy_name_list
|
||
|
|
||
|
# RS01 = RS01 x S01
|
||
|
assert 'RS01 = RS01 x S01' in strategy_name_list
|
||
|
|
||
|
# SR = SR x R WITH SYNC_BN
|
||
|
assert 'S0R = S0R x R WITH SYNC_BN' in strategy_name_list
|
||
|
assert 'S1R = S1R x R WITH SYNC_BN' in strategy_name_list
|
||
|
|
||
|
# SS = SS x S WITH SYNC_BN
|
||
|
assert 'S0S1 = S0S1 x S1 WITH SYNC_BN' in strategy_name_list
|
||
|
assert 'S1S0 = S1S0 x S0 WITH SYNC_BN' in strategy_name_list
|
||
|
|
||
|
# S01R = S01R x R WITH SYNC_BN
|
||
|
assert 'S01R = S01R x R WITH SYNC_BN' in strategy_name_list
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_bn_handler()
|