import torch from torch.fx import GraphModule import torch.nn as nn import pytest from colossalai.fx.proxy import ColoProxy from colossalai.fx.tracer.tracer import ColoTracer from colossalai.tensor.sharding_spec import ShardingSpec, _DimSpec from colossalai.auto_parallel.solver.op_handler.batch_norm_handler import BatchNormHandler from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector from colossalai.tensor.shape_consistency import ShapeConsistencyManager from colossalai.device.device_mesh import DeviceMesh class BNModel(nn.Module): def __init__(self, c): super().__init__() self.bn = nn.BatchNorm2d(c) def forward(self, x): x = x * 2 x = self.bn(x) return x def test_bn_handler(): physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1] # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape) entire_shape = torch.Size((4, 16, 64, 64)) shape_consistency_manager = ShapeConsistencyManager() tracer = ColoTracer() model = BNModel(16) input_sample = {'x': torch.rand(4, 16, 64, 64).to('meta')} # graph(): # %x : torch.Tensor [#users=1] = placeholder[target=x] # %mul : [#users=1] = call_function[target=operator.mul](args = (%x, 2), kwargs = {}) # %bn : [#users=1] = call_module[target=bn](args = (%mul,), kwargs = {}) # return bn graph = tracer.trace(root=model, meta_args=input_sample) gm = GraphModule(model, graph, model.__class__.__name__) gm.recompile() # [x, mul, bn, output] nodes = [node for node in gm.graph.nodes] # find the sharding strategies for the input node of the bn node # strategies_for_input = [[R, R, R, R], [R, S0, R, R], [R, S1, R, R], [S0, R, R, R], [S0, S1, R, R], [S1, R, R, R], [S1, S0, R, R]] strategies_vector_for_input = StrategiesVector(nodes[1]) sharding_option = (None, 0, 1) for first_sharding_index in sharding_option: for second_sharding_index in sharding_option: if first_sharding_index is not None and second_sharding_index == first_sharding_index: continue if first_sharding_index is None: first_dim_spec = _DimSpec([]) else: first_dim_spec = _DimSpec([first_sharding_index]) if second_sharding_index is None: second_dim_spec = _DimSpec([]) else: second_dim_spec = _DimSpec([second_sharding_index]) replica_dim_spec = _DimSpec([]) sharding_sequence = [first_dim_spec, second_dim_spec, replica_dim_spec, replica_dim_spec] sharding_spec = ShardingSpec(device_mesh=device_mesh, entire_shape=entire_shape, sharding_sequence=sharding_sequence) strategy_name = str(sharding_spec.sharding_sequence) sharding_strategy = ShardingStrategy(name=strategy_name, output_sharding_spec=sharding_spec) strategies_vector_for_input.append(sharding_strategy) setattr(nodes[1], 'strategies_vector', strategies_vector_for_input) # generate bn strategy strategies_vector = StrategiesVector(node=nodes[2]) bn_handler = BatchNormHandler(node=nodes[2], device_mesh=device_mesh, strategies_vector=strategies_vector, shape_consistency_manager=shape_consistency_manager) bn_handler.register_strategy() # ['RS0 = RS0 x S0', 'S1S0 = RS0 x S0', 'RS1 = RS1 x S1', 'S0S1 = RS1 x S1', 'RR = RR x R', 'S0R = RR x R', 'S1R = RR x R', 'S01R = RR x R', 'RS01 = RS01 x S01', # 'S0R = S0R x R WITH SYNC_BN', 'S1R = S1R x R WITH SYNC_BN', 'S0S1 = S0S1 x S1 WITH SYNC_BN', 'S1S0 = S1S0 x S0 WITH SYNC_BN', 'S01R = S01R x R WITH SYNC_BN'] strategy_name_list = [strategy.name for strategy in bn_handler.strategies_vector] # RS = RS x S and strategies based on it, such as # SS = RS x S assert 'RS0 = RS0 x S0' in strategy_name_list assert 'S1S0 = RS0 x S0' in strategy_name_list assert 'RS1 = RS1 x S1' in strategy_name_list assert 'S0S1 = RS1 x S1' in strategy_name_list # RR = RR x R and strategies based on it, such as # SR = SR x R assert 'RR = RR x R' in strategy_name_list assert 'S0R = RR x R' in strategy_name_list assert 'S1R = RR x R' in strategy_name_list assert 'S01R = RR x R' in strategy_name_list # RS01 = RS01 x S01 assert 'RS01 = RS01 x S01' in strategy_name_list # SR = SR x R WITH SYNC_BN assert 'S0R = S0R x R WITH SYNC_BN' in strategy_name_list assert 'S1R = S1R x R WITH SYNC_BN' in strategy_name_list # SS = SS x S WITH SYNC_BN assert 'S0S1 = S0S1 x S1 WITH SYNC_BN' in strategy_name_list assert 'S1S0 = S1S0 x S0 WITH SYNC_BN' in strategy_name_list # S01R = S01R x R WITH SYNC_BN assert 'S01R = S01R x R WITH SYNC_BN' in strategy_name_list if __name__ == '__main__': test_bn_handler()