Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

88 lines
3.4 KiB

"""
Our config contains various options for inference optimization, it is a unified API that wraps all the configurations for inference.
"""
import logging
from dataclasses import dataclass
from typing import Optional, Union
import torch
import torch.distributed as dist
GibiByte = 1024**3
logger = logging.Logger(__name__)
_DTYPE_MAPPING = {
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32,
}
_ALLOWED_DTYPES = [torch.float16, torch.bfloat16, torch.float32]
@dataclass
class InferenceConfig:
"""The inference configuration.
Args:
micro_batch_size (int): the micro batch size, defaults to 1. Only useful when `pp_size` > 1.
micro_batch_buffer_size (int): the buffer size for micro batch. Normally, it should be the same as the number of pipeline stages.
max_batch_size (int): Maximum batch size, defaults to 8.
max_output_len (int): Maximum output length, defaults to 256.
max_input_len (int): Maximum input length, defaults to 256.
block_size (int): The number of blocks in a logical block, defaults to 16.
dtype (Union[str, torch.dtype]): The data type for weights and activations.
tp_size (int): Tensor parallel size, defaults to 1.
pp_size (int): Pipeline parallel size, defaults to 1.
beam_width (int): The maximum beam width used to initialize KV Cache, defaults to 1.
During generation, the beam width provided as sampling parameter should be less than or equivalent to this value.
prefill_ratio (Optional[float]): A controling ratio for prefill and decoding in running list, defaults to 1.2. We will do a step of prefill
when the actual value exceeds this ratio.
pad_input: Whether to pad all inputs to the max length.
quant_mode (Optional[str]): Quantization mode.
revision (Optional[str]): The specific version(a branch, name, a commit id, or a tag name) of model to use.
"""
micro_batch_size: int = 1
micro_batch_buffer_size: int = None
max_batch_size: int = 8
max_output_len: int = 256
max_input_len: int = 256
block_size: int = 16
dtype: Union[str, torch.dtype] = torch.float16 # use fp16 by default
tp_size: int = 1
pp_size: int = 1
# TODO: beam search is not support for now
beam_width: int = 1
# the ratio of prefill sequences to decoding sequences, we do prefill step once the actual value exceeds ratio
prefill_ratio: Optional[float] = 1.2
pad_input: bool = False
quant_mode: Optional[str] = None
revision: Optional[str] = None
def __post_init__(self):
self._verify_config()
def _verify_config(self) -> None:
"""
Verify the input config
"""
# check dtype
if isinstance(self.dtype, str):
# convert string dtype to torch dtype
assert (
self.dtype in _DTYPE_MAPPING
), f"Expected the dtype string argument to be in {list(_DTYPE_MAPPING.keys())} but found an unknown dtype: {self.dtype}"
self.dtype = _DTYPE_MAPPING[self.dtype]
assert (
self.dtype in _ALLOWED_DTYPES
), f"Expected dtype to be in {_ALLOWED_DTYPES} but found an unknown dtype: {self.dtype}"
# check distributed
assert (
self.tp_size * self.pp_size == dist.get_world_size()
), f"TP size({self.tp_size}) * PP size({self.pp_size}) should be equal to the global world size ({dist.get_world_size()})"