""" Our config contains various options for inference optimization, it is a unified API that wraps all the configurations for inference. """ import logging from dataclasses import dataclass from typing import Optional, Union import torch import torch.distributed as dist GibiByte = 1024**3 logger = logging.Logger(__name__) _DTYPE_MAPPING = { "fp16": torch.float16, "bf16": torch.bfloat16, "fp32": torch.float32, } _ALLOWED_DTYPES = [torch.float16, torch.bfloat16, torch.float32] @dataclass class InferenceConfig: """The inference configuration. Args: micro_batch_size (int): the micro batch size, defaults to 1. Only useful when `pp_size` > 1. micro_batch_buffer_size (int): the buffer size for micro batch. Normally, it should be the same as the number of pipeline stages. max_batch_size (int): Maximum batch size, defaults to 8. max_output_len (int): Maximum output length, defaults to 256. max_input_len (int): Maximum input length, defaults to 256. block_size (int): The number of blocks in a logical block, defaults to 16. dtype (Union[str, torch.dtype]): The data type for weights and activations. tp_size (int): Tensor parallel size, defaults to 1. pp_size (int): Pipeline parallel size, defaults to 1. beam_width (int): The maximum beam width used to initialize KV Cache, defaults to 1. During generation, the beam width provided as sampling parameter should be less than or equivalent to this value. prefill_ratio (Optional[float]): A controling ratio for prefill and decoding in running list, defaults to 1.2. We will do a step of prefill when the actual value exceeds this ratio. pad_input: Whether to pad all inputs to the max length. quant_mode (Optional[str]): Quantization mode. revision (Optional[str]): The specific version(a branch, name, a commit id, or a tag name) of model to use. """ micro_batch_size: int = 1 micro_batch_buffer_size: int = None max_batch_size: int = 8 max_output_len: int = 256 max_input_len: int = 256 block_size: int = 16 dtype: Union[str, torch.dtype] = torch.float16 # use fp16 by default tp_size: int = 1 pp_size: int = 1 # TODO: beam search is not support for now beam_width: int = 1 # the ratio of prefill sequences to decoding sequences, we do prefill step once the actual value exceeds ratio prefill_ratio: Optional[float] = 1.2 pad_input: bool = False quant_mode: Optional[str] = None revision: Optional[str] = None def __post_init__(self): self._verify_config() def _verify_config(self) -> None: """ Verify the input config """ # check dtype if isinstance(self.dtype, str): # convert string dtype to torch dtype assert ( self.dtype in _DTYPE_MAPPING ), f"Expected the dtype string argument to be in {list(_DTYPE_MAPPING.keys())} but found an unknown dtype: {self.dtype}" self.dtype = _DTYPE_MAPPING[self.dtype] assert ( self.dtype in _ALLOWED_DTYPES ), f"Expected dtype to be in {_ALLOWED_DTYPES} but found an unknown dtype: {self.dtype}" # check distributed assert ( self.tp_size * self.pp_size == dist.get_world_size() ), f"TP size({self.tp_size}) * PP size({self.pp_size}) should be equal to the global world size ({dist.get_world_size()})"