You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/tensor/dist_spec_mgr.py

117 lines
4.9 KiB

from colossalai.tensor.distspec import _DistSpec
# from colossalai.nn.layer.utils import divide
from numpy import prod
from contextlib import contextmanager
import torch
import torch.distributed as dist
# TODO(jiaruifang) circle import, move the divide to colossalai.commons.
# colossalai.tensor shall not import any submodule from colossal.nn
def divide(numerator, denominator):
"""Only allow exact division.
Args:
numerator (int): Numerator of the division.
denominator (int): Denominator of the division.
Returns:
int: the result of exact division.
"""
assert denominator != 0, 'denominator can not be zero'
assert numerator % denominator == 0, \
'{} is not divisible by {}'.format(numerator, denominator)
return numerator // denominator
class TransformDistSpec(torch.autograd.Function):
@staticmethod
def forward(ctx, tensor, old_dist_spec, dist_spec, forward_trans_func, backward_trans_func):
ctx.old_dist_spec = old_dist_spec
ctx.dist_spec = dist_spec
ctx.backward_trans_func = backward_trans_func
return forward_trans_func(tensor, old_dist_spec, dist_spec)
@staticmethod
def backward(ctx, grad_outputs):
return ctx.backward_trans_func(grad_outputs, ctx.dist_spec, ctx.old_dist_spec), None, None, None, None
class DistSpecManager:
_use_autograd_function: bool = True
@staticmethod
def _shard_as(tensor: torch.Tensor, old_dist_spec: _DistSpec, dist_spec: _DistSpec) -> torch.Tensor:
chunk = tensor
idx = dist_spec.process_group.rank()
num_parts = prod(dist_spec.num_partitions)
for i, dim in enumerate(dist_spec.dims):
num_parts //= dist_spec.num_partitions[i]
chunk_size = divide(tensor.size(dim), dist_spec.num_partitions[i])
chunk = chunk.narrow(dim, idx // num_parts * chunk_size, chunk_size)
idx %= num_parts
return chunk.clone().detach().contiguous()
@staticmethod
def _gather(tensor: torch.Tensor, old_dist_spec: _DistSpec) -> torch.Tensor:
buffer = [torch.empty_like(tensor) for _ in range(old_dist_spec.process_group.size())]
dist.all_gather(buffer, tensor, group=old_dist_spec.process_group)
for i in range(len(old_dist_spec.dims) - 1, -1, -1):
new_buffer = []
dim = old_dist_spec.dims[i]
num_parts = old_dist_spec.num_partitions[i]
for start in range(0, len(buffer), num_parts):
new_buffer.append(torch.cat(buffer[start:start + num_parts], dim))
buffer = new_buffer
assert len(buffer) == 1
return buffer[0]
@staticmethod
def _r2r(tensor: torch.Tensor, old_dist_spec: _DistSpec, dist_spec: _DistSpec) -> torch.Tensor:
if old_dist_spec.process_group is not None and old_dist_spec.process_group != dist_spec.process_group \
and dist_spec.process_group is not None:
raise NotImplementedError
return tensor
@staticmethod
def _r2s(tensor: torch.Tensor, old_dist_spec: _DistSpec, dist_spec: _DistSpec) -> torch.Tensor:
if old_dist_spec.process_group is not None and old_dist_spec.process_group != dist_spec.process_group:
raise NotImplementedError
return DistSpecManager._shard_as(tensor, old_dist_spec, dist_spec)
@staticmethod
def _s2r(tensor: torch.Tensor, old_dist_spec: _DistSpec, dist_spec: _DistSpec) -> torch.Tensor:
if old_dist_spec.process_group != dist_spec.process_group \
and dist_spec.process_group is not None:
raise NotImplementedError
return DistSpecManager._gather(tensor, old_dist_spec)
@staticmethod
def _s2s(tensor: torch.Tensor, old_dist_spec: _DistSpec, dist_spec: _DistSpec) -> torch.Tensor:
if old_dist_spec.process_group != dist_spec.process_group:
raise NotImplementedError
if old_dist_spec == dist_spec:
return tensor
tensor = DistSpecManager._gather(tensor, old_dist_spec)
return DistSpecManager._shard_as(tensor, old_dist_spec, dist_spec)
@staticmethod
def handle_trans_spec(tensor: torch.Tensor, old_dist_spec: _DistSpec, dist_spec: _DistSpec) -> torch.Tensor:
forward_trans_handle = getattr(DistSpecManager, f'_{old_dist_spec.placement.value}2{dist_spec.placement.value}')
if not DistSpecManager._use_autograd_function:
return forward_trans_handle(tensor, old_dist_spec, dist_spec)
backward_trans_handle = getattr(DistSpecManager,
f'_{dist_spec.placement.value}2{old_dist_spec.placement.value}')
return TransformDistSpec.apply(tensor, old_dist_spec, dist_spec, forward_trans_handle, backward_trans_handle)
@staticmethod
@contextmanager
def no_grad():
try:
DistSpecManager._use_autograd_function = False
yield
finally:
DistSpecManager._use_autograd_function = True