You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/language/performance_evaluator.py

149 lines
5.1 KiB

from time import time
from typing import Optional
import torch
import torch.distributed as dist
from torch import Tensor
from torch.profiler import ProfilerActivity, profile, schedule, tensorboard_trace_handler
from colossalai.accelerator import get_accelerator
from colossalai.cluster import DistCoordinator
def divide(x: float, y: float) -> float:
if y == 0:
return float("inf")
elif y == float("inf"):
return float("nan")
return x / y
@torch.no_grad()
def all_reduce_mean(x: float, world_size: int) -> float:
if world_size == 1:
return x
tensor = torch.tensor([x], device=get_accelerator().get_current_device())
dist.all_reduce(tensor)
tensor = tensor / world_size
return tensor.item()
def get_profile_context(enable_flag, warmup_steps, active_steps, save_dir):
class DummyProfiler:
def __init__(self):
self.step_number = 0
def step(self):
self.step_number += 1
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
pass
if enable_flag:
return profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
schedule=schedule(wait=0, warmup=warmup_steps, active=active_steps),
on_trace_ready=tensorboard_trace_handler(save_dir),
record_shapes=True,
profile_memory=True,
with_stack=True,
)
else:
return DummyProfiler()
class Timer:
def __init__(self) -> None:
self.start_time: Optional[float] = None
self.duration: float = 0.0
def start(self) -> None:
self.start_time = time()
def end(self) -> None:
assert self.start_time is not None
self.duration += time() - self.start_time
self.start_time = None
def reset(self) -> None:
self.duration = 0.0
class PerformanceEvaluator:
"""
Callback for valuate the performance of the model.
Args:
actor_num_params: The number of parameters of the actor model.
critic_num_params: The number of parameters of the critic model.
initial_model_num_params: The number of parameters of the initial model.
reward_model_num_params: The number of parameters of the reward model.
enable_grad_checkpoint: Whether to enable gradient checkpointing.
ignore_episodes: The number of episodes to ignore when calculating the performance.
"""
def __init__(
self,
model_numel: int,
num_layers: int,
hidden_size: int,
vocab_size: int,
enable_grad_checkpoint: bool = False,
ignore_steps: int = 0,
dp_world_size: Optional[int] = None,
) -> None:
self.model_numel = model_numel
self.enable_grad_checkpoint = enable_grad_checkpoint
self.ignore_steps = ignore_steps
self.num_layers = num_layers
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.coordinator = DistCoordinator()
self.dp_world_size = dp_world_size or self.coordinator.world_size
self.disable: bool = False
self.timer = Timer()
self.num_samples: int = 0
self.flop_megatron = 0
self.flop: int = 0
def on_step_start(self, step: int) -> None:
self.disable = self.ignore_steps > 0 and step < self.ignore_steps
if self.disable:
return
get_accelerator().synchronize()
self.timer.start()
def on_step_end(self, input_ids: Tensor, **kwargs) -> None:
if self.disable:
return
get_accelerator().synchronize()
self.timer.end()
batch_size, seq_len = input_ids.shape
self.num_samples += batch_size
checkpoint_activations_factor = 3 + int(self.enable_grad_checkpoint)
self.flop_megatron += (
24 * checkpoint_activations_factor * batch_size * seq_len * self.num_layers * (self.hidden_size**2)
) * (
1.0 + (seq_len / (6.0 * self.hidden_size)) + (self.vocab_size / (16.0 * self.num_layers * self.hidden_size))
)
self.flop += batch_size * seq_len * self.model_numel * 2 * (3 + int(self.enable_grad_checkpoint))
def on_fit_end(self) -> None:
avg_duration = all_reduce_mean(self.timer.duration, self.coordinator.world_size)
avg_throughput = self.num_samples * self.dp_world_size / (avg_duration + 1e-12)
mp_world_size = self.coordinator.world_size // self.dp_world_size
avg_tflops_per_gpu_megatron = self.flop_megatron / 1e12 / (avg_duration + 1e-12) / mp_world_size
avg_tflops_per_gpu = self.flop / 1e12 / (avg_duration + 1e-12) / mp_world_size
self.coordinator.print_on_master(
f"num_samples: {self.num_samples}, dp_world_size: {self.dp_world_size}, flop_megatron: {self.flop_megatron}, flop: {self.flop}, avg_duration: {avg_duration}, "
f"avg_throughput: {avg_throughput}"
)
self.coordinator.print_on_master(
f"Throughput: {avg_throughput:.2f} samples/sec, TFLOPS per GPU by Megatron: {avg_tflops_per_gpu_megatron:.2f}, TFLOPS per GPU: {avg_tflops_per_gpu:.2f}"
)