from time import time from typing import Optional import torch import torch.distributed as dist from torch import Tensor from torch.profiler import ProfilerActivity, profile, schedule, tensorboard_trace_handler from colossalai.accelerator import get_accelerator from colossalai.cluster import DistCoordinator def divide(x: float, y: float) -> float: if y == 0: return float("inf") elif y == float("inf"): return float("nan") return x / y @torch.no_grad() def all_reduce_mean(x: float, world_size: int) -> float: if world_size == 1: return x tensor = torch.tensor([x], device=get_accelerator().get_current_device()) dist.all_reduce(tensor) tensor = tensor / world_size return tensor.item() def get_profile_context(enable_flag, warmup_steps, active_steps, save_dir): class DummyProfiler: def __init__(self): self.step_number = 0 def step(self): self.step_number += 1 def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): pass if enable_flag: return profile( activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], schedule=schedule(wait=0, warmup=warmup_steps, active=active_steps), on_trace_ready=tensorboard_trace_handler(save_dir), record_shapes=True, profile_memory=True, with_stack=True, ) else: return DummyProfiler() class Timer: def __init__(self) -> None: self.start_time: Optional[float] = None self.duration: float = 0.0 def start(self) -> None: self.start_time = time() def end(self) -> None: assert self.start_time is not None self.duration += time() - self.start_time self.start_time = None def reset(self) -> None: self.duration = 0.0 class PerformanceEvaluator: """ Callback for valuate the performance of the model. Args: actor_num_params: The number of parameters of the actor model. critic_num_params: The number of parameters of the critic model. initial_model_num_params: The number of parameters of the initial model. reward_model_num_params: The number of parameters of the reward model. enable_grad_checkpoint: Whether to enable gradient checkpointing. ignore_episodes: The number of episodes to ignore when calculating the performance. """ def __init__( self, model_numel: int, num_layers: int, hidden_size: int, vocab_size: int, enable_grad_checkpoint: bool = False, ignore_steps: int = 0, dp_world_size: Optional[int] = None, ) -> None: self.model_numel = model_numel self.enable_grad_checkpoint = enable_grad_checkpoint self.ignore_steps = ignore_steps self.num_layers = num_layers self.hidden_size = hidden_size self.vocab_size = vocab_size self.coordinator = DistCoordinator() self.dp_world_size = dp_world_size or self.coordinator.world_size self.disable: bool = False self.timer = Timer() self.num_samples: int = 0 self.flop_megatron = 0 self.flop: int = 0 def on_step_start(self, step: int) -> None: self.disable = self.ignore_steps > 0 and step < self.ignore_steps if self.disable: return get_accelerator().synchronize() self.timer.start() def on_step_end(self, input_ids: Tensor, **kwargs) -> None: if self.disable: return get_accelerator().synchronize() self.timer.end() batch_size, seq_len = input_ids.shape self.num_samples += batch_size checkpoint_activations_factor = 3 + int(self.enable_grad_checkpoint) self.flop_megatron += ( 24 * checkpoint_activations_factor * batch_size * seq_len * self.num_layers * (self.hidden_size**2) ) * ( 1.0 + (seq_len / (6.0 * self.hidden_size)) + (self.vocab_size / (16.0 * self.num_layers * self.hidden_size)) ) self.flop += batch_size * seq_len * self.model_numel * 2 * (3 + int(self.enable_grad_checkpoint)) def on_fit_end(self) -> None: avg_duration = all_reduce_mean(self.timer.duration, self.coordinator.world_size) avg_throughput = self.num_samples * self.dp_world_size / (avg_duration + 1e-12) mp_world_size = self.coordinator.world_size // self.dp_world_size avg_tflops_per_gpu_megatron = self.flop_megatron / 1e12 / (avg_duration + 1e-12) / mp_world_size avg_tflops_per_gpu = self.flop / 1e12 / (avg_duration + 1e-12) / mp_world_size self.coordinator.print_on_master( f"num_samples: {self.num_samples}, dp_world_size: {self.dp_world_size}, flop_megatron: {self.flop_megatron}, flop: {self.flop}, avg_duration: {avg_duration}, " f"avg_throughput: {avg_throughput}" ) self.coordinator.print_on_master( f"Throughput: {avg_throughput:.2f} samples/sec, TFLOPS per GPU by Megatron: {avg_tflops_per_gpu_megatron:.2f}, TFLOPS per GPU: {avg_tflops_per_gpu:.2f}" )