mirror of https://github.com/hpcaitech/ColossalAI
120 lines
4.9 KiB
Python
120 lines
4.9 KiB
Python
|
"""
|
|||
|
Script for English retrieval based conversation system backed by LLaMa2
|
|||
|
"""
|
|||
|
import argparse
|
|||
|
import os
|
|||
|
|
|||
|
from colossalqa.chain.retrieval_qa.base import RetrievalQA
|
|||
|
from colossalqa.data_loader.document_loader import DocumentLoader
|
|||
|
from colossalqa.local.llm import ColossalAPI, ColossalLLM
|
|||
|
from colossalqa.memory import ConversationBufferWithSummary
|
|||
|
from colossalqa.prompt.prompt import (
|
|||
|
EN_RETRIEVAL_QA_REJECTION_ANSWER,
|
|||
|
EN_RETRIEVAL_QA_TRIGGER_KEYWORDS,
|
|||
|
PROMPT_DISAMBIGUATE_EN,
|
|||
|
PROMPT_RETRIEVAL_QA_EN,
|
|||
|
)
|
|||
|
from colossalqa.retriever import CustomRetriever
|
|||
|
from langchain import LLMChain
|
|||
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|||
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
# Parse arguments
|
|||
|
parser = argparse.ArgumentParser(description="English retrieval based conversation system backed by LLaMa2")
|
|||
|
parser.add_argument("--model_path", type=str, default=None, help="path to the model")
|
|||
|
parser.add_argument("--model_name", type=str, default=None, help="name of the model")
|
|||
|
parser.add_argument(
|
|||
|
"--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing"
|
|||
|
)
|
|||
|
|
|||
|
args = parser.parse_args()
|
|||
|
if not os.path.exists(args.sql_file_path):
|
|||
|
os.makedirs(args.sql_file_path)
|
|||
|
|
|||
|
colossal_api = ColossalAPI.get_api(args.model_name, args.model_path)
|
|||
|
llm = ColossalLLM(n=1, api=colossal_api)
|
|||
|
|
|||
|
# Define the retriever
|
|||
|
information_retriever = CustomRetriever(k=3, sql_file_path=args.sql_file_path, verbose=True)
|
|||
|
|
|||
|
# Setup embedding model locally
|
|||
|
embedding = HuggingFaceEmbeddings(
|
|||
|
model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False}
|
|||
|
)
|
|||
|
|
|||
|
# Define memory with summarization ability
|
|||
|
memory = ConversationBufferWithSummary(
|
|||
|
llm=llm, max_tokens=2000, llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True}
|
|||
|
)
|
|||
|
|
|||
|
# Define the chain to preprocess the input
|
|||
|
# Disambiguate the input. e.g. "What is the capital of that country?" -> "What is the capital of France?"
|
|||
|
llm_chain_disambiguate = LLMChain(
|
|||
|
llm=llm, prompt=PROMPT_DISAMBIGUATE_EN, llm_kwargs={"max_new_tokens": 30, "temperature": 0.6, "do_sample": True}
|
|||
|
)
|
|||
|
|
|||
|
def disambiguity(input):
|
|||
|
out = llm_chain_disambiguate.run(input=input, chat_history=memory.buffer, stop=["\n"])
|
|||
|
return out.split("\n")[0]
|
|||
|
|
|||
|
# Load data to vector store
|
|||
|
print("Select files for constructing retriever")
|
|||
|
documents = []
|
|||
|
while True:
|
|||
|
file = input("Enter a file path or press Enter directory without input to exit:").strip()
|
|||
|
if file == "":
|
|||
|
break
|
|||
|
data_name = input("Enter a short description of the data:")
|
|||
|
separator = input(
|
|||
|
"Enter a separator to force separating text into chunks, if no separator is given, the defaut separator is '\\n\\n'. Note that"
|
|||
|
+ "we use neural text spliter to split texts into chunks, the seperator only serves as a delimiter to force split long passage into"
|
|||
|
+ " chunks before passing to the neural network. Press ENTER directly to skip:"
|
|||
|
)
|
|||
|
separator = separator if separator != "" else "\n\n"
|
|||
|
retriever_data = DocumentLoader([[file, data_name.replace(" ", "_")]]).all_data
|
|||
|
|
|||
|
# Split
|
|||
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20)
|
|||
|
splits = text_splitter.split_documents(retriever_data)
|
|||
|
documents.extend(splits)
|
|||
|
# Create retriever
|
|||
|
information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding)
|
|||
|
|
|||
|
# Set document retrieval chain, we need this chain to calculate prompt length
|
|||
|
memory.initiate_document_retrieval_chain(
|
|||
|
llm,
|
|||
|
PROMPT_RETRIEVAL_QA_EN,
|
|||
|
information_retriever,
|
|||
|
chain_type_kwargs={
|
|||
|
"chat_history": "",
|
|||
|
},
|
|||
|
)
|
|||
|
|
|||
|
# Define retrieval chain
|
|||
|
retrieval_chain = RetrievalQA.from_chain_type(
|
|||
|
llm=llm,
|
|||
|
verbose=False,
|
|||
|
chain_type="stuff",
|
|||
|
retriever=information_retriever,
|
|||
|
chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_QA_EN, "memory": memory},
|
|||
|
llm_kwargs={"max_new_tokens": 50, "temperature": 0.75, "do_sample": True},
|
|||
|
)
|
|||
|
# Set disambiguity handler
|
|||
|
information_retriever.set_rephrase_handler(disambiguity)
|
|||
|
|
|||
|
# Start conversation
|
|||
|
while True:
|
|||
|
user_input = input("User: ")
|
|||
|
if "END" == user_input:
|
|||
|
print("Agent: Happy to chat with you :)")
|
|||
|
break
|
|||
|
agent_response = retrieval_chain.run(
|
|||
|
query=user_input,
|
|||
|
stop=["Human: "],
|
|||
|
rejection_trigger_keywrods=EN_RETRIEVAL_QA_TRIGGER_KEYWORDS,
|
|||
|
rejection_answer=EN_RETRIEVAL_QA_REJECTION_ANSWER,
|
|||
|
)
|
|||
|
agent_response = agent_response.split("\n")[0]
|
|||
|
print(f"Agent: {agent_response}")
|