2023-05-22 07:02:17 +00:00
|
|
|
# part of code modified from https://github.com/tunib-ai/parallelformers
|
|
|
|
|
2023-06-15 09:55:42 +00:00
|
|
|
from abc import ABC, abstractmethod
|
2023-06-07 08:09:40 +00:00
|
|
|
from dataclasses import dataclass
|
2024-04-01 03:34:58 +00:00
|
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
2023-05-24 02:26:46 +00:00
|
|
|
|
2023-05-22 07:02:17 +00:00
|
|
|
import torch.nn as nn
|
2023-07-05 06:16:55 +00:00
|
|
|
from torch import Tensor
|
|
|
|
from torch.nn import Module
|
|
|
|
|
|
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
2023-05-24 02:26:46 +00:00
|
|
|
|
2023-11-03 05:32:43 +00:00
|
|
|
from ..layer.normalization import BaseLayerNorm
|
2023-08-16 07:41:20 +00:00
|
|
|
from ..layer.parallel_module import ParallelModule
|
2023-06-15 09:55:42 +00:00
|
|
|
from ..shard.shard_config import ShardConfig
|
2023-05-22 07:02:17 +00:00
|
|
|
|
2023-06-30 02:56:29 +00:00
|
|
|
__all__ = ["ParallelModule", "SubModuleReplacementDescription", "ModulePolicyDescription", "Policy"]
|
|
|
|
|
2023-05-24 02:26:46 +00:00
|
|
|
|
2023-05-22 07:02:17 +00:00
|
|
|
@dataclass
|
2023-06-15 09:55:42 +00:00
|
|
|
class SubModuleReplacementDescription:
|
2023-05-24 02:26:46 +00:00
|
|
|
r"""
|
2023-06-15 09:55:42 +00:00
|
|
|
Describe how a submodule will be replaced
|
2023-05-24 02:26:46 +00:00
|
|
|
|
2023-07-03 07:29:11 +00:00
|
|
|
Args:
|
|
|
|
suffix (str): used to get the submodule object
|
|
|
|
target_module (ParallelModule): specifies the module class used to replace to submodule
|
|
|
|
kwargs (Dict[str, Any]): the dictionary used to pass extra arguments to the `ParallelModule.from_native_module` method.
|
|
|
|
ignore_if_not_exist (bool): if the submodule does not exist, ignore it or raise an exception
|
2023-05-22 07:02:17 +00:00
|
|
|
"""
|
2023-06-15 09:55:42 +00:00
|
|
|
suffix: str
|
2023-11-03 05:32:43 +00:00
|
|
|
target_module: Union[ParallelModule, BaseLayerNorm]
|
2023-06-15 09:55:42 +00:00
|
|
|
kwargs: Dict[str, Any] = None
|
2023-06-19 09:57:37 +00:00
|
|
|
ignore_if_not_exist: bool = False
|
2023-05-22 07:02:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
2023-06-15 09:55:42 +00:00
|
|
|
class ModulePolicyDescription:
|
2023-05-24 02:26:46 +00:00
|
|
|
r"""
|
2023-07-03 07:29:11 +00:00
|
|
|
Describe how the attributes and parameters will be transformed in a policy.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
attribute_replacement (Dict[str, Any]): key is the attribute name, value is the attribute value after sharding
|
|
|
|
param_replacement (List[Callable]): a list of functions to perform in-place param replacement. The function
|
|
|
|
must receive only one arguments: module. One example is
|
|
|
|
|
|
|
|
```python
|
|
|
|
def example_replace_weight(module: torch.nn.Module):
|
|
|
|
weight = module.weight
|
|
|
|
new_weight = shard_rowwise(weight, process_group)
|
|
|
|
module.weight = torch.nn.Parameter(new_weight)
|
|
|
|
```
|
2023-09-27 02:43:03 +00:00
|
|
|
sub_module_replacement (List[SubModuleReplacementDescription]): each element in the list is a SubModuleReplacementDescription
|
2023-07-03 07:29:11 +00:00
|
|
|
object which specifies the module to be replaced and the target module used to replacement.
|
|
|
|
method_replace (Dict[str, Callable]): key is the method name, value is the method for replacement
|
2023-06-15 08:50:08 +00:00
|
|
|
"""
|
2023-07-03 07:29:11 +00:00
|
|
|
attribute_replacement: Dict[str, Any] = None
|
|
|
|
param_replacement: List[Callable] = None
|
|
|
|
sub_module_replacement: List[SubModuleReplacementDescription] = None
|
|
|
|
method_replacement: Dict[str, Callable] = None
|
2023-06-15 08:50:08 +00:00
|
|
|
|
|
|
|
|
2023-06-15 09:55:42 +00:00
|
|
|
class Policy(ABC):
|
2023-05-24 02:26:46 +00:00
|
|
|
r"""
|
2023-07-03 07:29:11 +00:00
|
|
|
The base class for all the policies. For each different model, it should have a different policy class,
|
|
|
|
like BertPolicy for Bert Model or OPTPolicy for OPT model.
|
2023-05-24 02:26:46 +00:00
|
|
|
|
2023-07-03 07:29:11 +00:00
|
|
|
Shardformer has provided many built-in sharding policies for the mainstream models. You can use the
|
2023-07-04 09:53:39 +00:00
|
|
|
built-in policies by setting `policy = None`, which is already the default argument for `Shardformer.optimize`.
|
2023-07-03 07:29:11 +00:00
|
|
|
If you want to define your own policy, you can inherit from this class and overwrite the methods you want to modify.
|
2023-05-22 07:02:17 +00:00
|
|
|
"""
|
2023-05-24 02:26:46 +00:00
|
|
|
|
2023-06-15 09:55:42 +00:00
|
|
|
def __init__(self) -> None:
|
2023-07-05 06:16:55 +00:00
|
|
|
self.shard_config: Optional[ShardConfig] = None
|
|
|
|
self.model: Optional[Module] = None
|
2023-06-15 09:55:42 +00:00
|
|
|
|
|
|
|
def set_model(self, model: nn.Module) -> None:
|
2023-05-24 02:26:46 +00:00
|
|
|
r"""
|
2023-06-15 09:55:42 +00:00
|
|
|
Set model as an attribute of the Policy object so that we can access the model's attributes.
|
2023-05-22 07:02:17 +00:00
|
|
|
Args:
|
2023-06-15 09:55:42 +00:00
|
|
|
model (:class:`nn.Module`): The model to be perform
|
|
|
|
"""
|
|
|
|
self.model = model
|
|
|
|
|
2023-06-19 02:47:16 +00:00
|
|
|
def set_shard_config(self, shard_config: ShardConfig) -> None:
|
|
|
|
r"""
|
|
|
|
Set shard config as an attribute of the Policy object.
|
|
|
|
Args:
|
|
|
|
shard_config (:class:`ShardConfig`): The shard config to be perform
|
|
|
|
"""
|
|
|
|
self.shard_config = shard_config
|
2023-11-03 05:32:43 +00:00
|
|
|
|
2023-06-30 01:32:37 +00:00
|
|
|
self.config_sanity_check()
|
|
|
|
|
2023-07-05 06:16:55 +00:00
|
|
|
@property
|
|
|
|
def pipeline_stage_manager(self) -> Optional[PipelineStageManager]:
|
|
|
|
if self.shard_config is not None:
|
|
|
|
return self.shard_config.pipeline_stage_manager
|
|
|
|
return None
|
|
|
|
|
2023-06-30 01:32:37 +00:00
|
|
|
@abstractmethod
|
|
|
|
def config_sanity_check(self):
|
|
|
|
"""
|
|
|
|
Check if the shard config is valid for the model. Raise an exception if the config is invalid.
|
2023-07-03 07:29:11 +00:00
|
|
|
This method is made abstractmethod with no default implementation because we want to the policy writer
|
|
|
|
to take note of the feature supported by his/her model and policy.
|
2023-06-30 01:32:37 +00:00
|
|
|
"""
|
2023-06-19 02:47:16 +00:00
|
|
|
|
2023-06-15 09:55:42 +00:00
|
|
|
@abstractmethod
|
2023-06-19 02:47:16 +00:00
|
|
|
def preprocess(self) -> nn.Module:
|
2023-06-15 09:55:42 +00:00
|
|
|
r"""
|
2023-07-03 07:29:11 +00:00
|
|
|
Perform some preprocessing of the model, like reshaping the embedding layer.
|
2023-06-15 09:55:42 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
@abstractmethod
|
2023-06-19 02:47:16 +00:00
|
|
|
def module_policy(self) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
2023-06-15 09:55:42 +00:00
|
|
|
r"""
|
2023-07-03 07:29:11 +00:00
|
|
|
This method returns the module policy, which is a dictionary. The key is the module name or the module object,
|
|
|
|
and the value is the ModulePolicyDescription object. The ModulePolicyDescription object describes how the module
|
|
|
|
will be transformed.
|
2023-05-22 07:02:17 +00:00
|
|
|
"""
|
2023-05-24 02:26:46 +00:00
|
|
|
|
2023-06-15 09:55:42 +00:00
|
|
|
@abstractmethod
|
|
|
|
def postprocess(self) -> nn.Module:
|
2023-05-24 02:26:46 +00:00
|
|
|
r"""
|
2023-06-15 09:55:42 +00:00
|
|
|
Perform some postprocessing of the model, like binding the weight of embedding layer with
|
|
|
|
the classifier layer
|
2023-05-22 07:02:17 +00:00
|
|
|
"""
|
2023-07-04 01:57:03 +00:00
|
|
|
|
|
|
|
def append_or_create_submodule_replacement(
|
2023-09-19 06:20:26 +00:00
|
|
|
self,
|
|
|
|
description: Union[SubModuleReplacementDescription, List[SubModuleReplacementDescription]],
|
|
|
|
policy: Dict[Union[str, nn.Module], ModulePolicyDescription],
|
|
|
|
target_key: Union[str, nn.Module],
|
|
|
|
) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
2023-07-04 01:57:03 +00:00
|
|
|
r"""
|
|
|
|
Append or create a new submodule replacement description to the policy for the given key.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
submodule_replace_desc (Union[SubModuleReplacementDescription, List[SubModuleReplacementDescription]]): the submodule replacement description to be appended
|
|
|
|
policy (Dict[Union[str, nn.Module], ModulePolicyDescription]): the policy to be updated
|
|
|
|
target_key (Union[str, nn.Module]): the key of the policy to be updated
|
|
|
|
"""
|
|
|
|
# convert to list
|
|
|
|
if isinstance(description, SubModuleReplacementDescription):
|
|
|
|
description = [description]
|
|
|
|
|
|
|
|
# append or create a new description
|
|
|
|
if target_key in policy:
|
2023-07-14 01:51:53 +00:00
|
|
|
if policy[target_key].sub_module_replacement is None:
|
|
|
|
policy[target_key].sub_module_replacement = description
|
|
|
|
else:
|
|
|
|
policy[target_key].sub_module_replacement.extend(description)
|
2023-07-04 01:57:03 +00:00
|
|
|
else:
|
|
|
|
policy[target_key] = ModulePolicyDescription(sub_module_replacement=description)
|
|
|
|
|
|
|
|
return policy
|
2023-07-05 06:16:55 +00:00
|
|
|
|
2023-07-11 07:23:33 +00:00
|
|
|
def append_or_create_method_replacement(
|
2023-09-19 06:20:26 +00:00
|
|
|
self,
|
|
|
|
description: Dict[str, Callable],
|
|
|
|
policy: Dict[Union[str, nn.Module], ModulePolicyDescription],
|
|
|
|
target_key: Union[str, nn.Module],
|
|
|
|
) -> Dict[Union[str, nn.Module], ModulePolicyDescription]:
|
2023-07-11 07:23:33 +00:00
|
|
|
r"""
|
|
|
|
Append or create a new method replacement description to the policy for the given key.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
description (Union[SubModuleReplacementDescription, List[SubModuleReplacementDescription]]): the submodule replacement description to be appended
|
|
|
|
policy (Dict[Union[str, nn.Module], ModulePolicyDescription]): the policy to be updated
|
|
|
|
target_key (Union[str, nn.Module]): the key of the policy to be updated
|
|
|
|
"""
|
|
|
|
if target_key in policy:
|
2023-07-14 01:51:53 +00:00
|
|
|
if policy[target_key].method_replacement is None:
|
|
|
|
policy[target_key].method_replacement = description
|
|
|
|
else:
|
|
|
|
policy[target_key].method_replacement.update(description)
|
2023-07-11 07:23:33 +00:00
|
|
|
else:
|
|
|
|
policy[target_key] = ModulePolicyDescription(method_replacement=description)
|
|
|
|
|
|
|
|
return policy
|
|
|
|
|
2023-07-05 06:16:55 +00:00
|
|
|
def get_held_layers(self) -> List[Module]:
|
|
|
|
"""Get layers that should be held in current stage. This method should be implemented by subclass.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Module]: List of layers that should be hold in current stage
|
|
|
|
"""
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
|
|
"""Get parameters that should be shared across stages. This method should be implemented by subclass.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Dict[int, Tensor]]: List of parameters that should be shared across stages. E.g. [{0: module.model.embed_tokens.weight, 3: module.lm_head.weight}]
|
|
|
|
"""
|
|
|
|
return []
|
[shardformer] refactor embedding resize (#5603)
* [branch rebase] rebase main to Feature/resize_embedding (#5554)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [CI] run pre-commit (#5577)
* fix
* [release] update version (#5411)
* [hotfix] fix typo s/keywrods/keywords etc. (#5429)
* [devops] fix compatibility (#5444)
* [devops] fix compatibility
* [hotfix] update compatibility test on pr
* [devops] fix compatibility
* [devops] record duration during comp test
* [test] decrease test duration
* fix falcon
* [shardformer] fix gathering output when using tensor parallelism (#5431)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* [doc] release Open-Sora 1.0 with model weights (#5468)
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] release Open-Sora 1.0 with model weights
* [doc] update open-sora demo (#5479)
* [doc] update open-sora demo
* [doc] update open-sora demo
* [doc] update open-sora demo
* [example] add grok-1 inference (#5485)
* [misc] add submodule
* remove submodule
* [example] support grok-1 tp inference
* [example] add grok-1 inference script
* [example] refactor code
* [example] add grok-1 readme
* [exmaple] add test ci
* [exmaple] update readme
* run pre-commit
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* [rebase] rebase main to resize-embedding (#5581)
* [release] grok-1 314b inference (#5490)
* [release] grok-1 inference
* [release] grok-1 inference
* [release] grok-1 inference
* [example] update Grok-1 inference (#5495)
* revise grok-1 example
* remove unused arg in scripts
* prevent re-installing torch
* update readme
* revert modifying colossalai requirements
* add perf
* trivial
* add tokenizer url
* [hotfix] set return_outputs=False in examples and polish code (#5404)
* fix: simplify merge_batch
* fix: use return_outputs=False to eliminate extra memory consumption
* feat: add return_outputs warning
* style: remove `return_outputs=False` as it is the default value
* [release] grok-1 inference benchmark (#5500)
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [release] grok-1 inference benchmark
* [shardformer]Fix lm parallel. (#5480)
* fix
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* fix lm forward distribution
* fix
* test ci
* fix
* [fix] fix grok-1 example typo (#5506)
* [devops] fix example test ci (#5504)
* Fix ColoTensorSpec for py11 (#5440)
* fixed layout converter caching and updated tester
* Empty-Commit
* [shardformer] update colo attention to support custom mask (#5510)
* [feature] refactor colo attention (#5462)
* [extension] update api
* [feature] add colo attention
* [feature] update sdpa
* [feature] update npu attention
* [feature] update flash-attn
* [test] add flash attn test
* [test] update flash attn test
* [shardformer] update modeling to fit colo attention (#5465)
* [misc] refactor folder structure
* [shardformer] update llama flash-attn
* [shardformer] fix llama policy
* [devops] update tensornvme install
* [test] update llama test
* [shardformer] update colo attn kernel dispatch
* [shardformer] update blip2
* [shardformer] update chatglm
* [shardformer] update gpt2
* [shardformer] update gptj
* [shardformer] update opt
* [shardformer] update vit
* [shardformer] update colo attention mask prep
* [shardformer] update whisper
* [test] fix shardformer tests (#5514)
* [test] fix shardformer tests
* [test] fix shardformer tests
* [format] applied code formatting on changed files in pull request 5510 (#5517)
Co-authored-by: github-actions <github-actions@github.com>
* [shardformer] fix pipeline forward error if custom layer distribution is used (#5189)
* Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution
* Change static methods for t5 layer distribution to member functions
* Change static methods for whisper layer distribution to member functions
* Replace whisper policy usage with self one
* Fix test case to use non-static layer distribution methods
* fix: fix typo
---------
Co-authored-by: Wenhao Chen <cwher@outlook.com>
* [Fix] Grok-1 use tokenizer from the same pretrained path (#5532)
* [fix] use tokenizer from the same pretrained path
* trust remote code
* [ColossalChat] Update RLHF V2 (#5286)
* Add dpo. Fix sft, ppo, lora. Refactor all
* fix and tested ppo
* 2 nd round refactor
* add ci tests
* fix ci
* fix ci
* fix readme, style
* fix readme style
* fix style, fix benchmark
* reproduce benchmark result, remove useless files
* rename to ColossalChat
* use new image
* fix ci workflow
* fix ci
* use local model/tokenizer for ci tests
* fix ci
* fix ci
* fix ci
* fix ci timeout
* fix rm progress bar. fix ci timeout
* fix ci
* fix ci typo
* remove 3d plugin from ci temporary
* test environment
* cannot save optimizer
* support chat template
* fix readme
* fix path
* test ci locally
* restore build_or_pr
* fix ci data path
* fix benchmark
* fix ci, move ci tests to 3080, disable fast tokenizer
* move ci to 85
* support flash attention 2
* add all-in-one data preparation script. Fix colossal-llama2-chat chat template
* add hardware requirements
* move ci test data
* fix save_model, add unwrap
* fix missing bos
* fix missing bos; support grad accumulation with gemini
* fix ci
* fix ci
* fix ci
* fix llama2 chat template config
* debug sft
* debug sft
* fix colossalai version requirement
* fix ci
* add sanity check to prevent NaN loss
* fix requirements
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* add dummy data generation script
* update readme
* update readme
* update readme and ignore
* fix logger bug
* support parallel_output
* modify data preparation logic
* fix tokenization
* update lr
* fix inference
* run pre-commit
---------
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
* [shardformer, pipeline] add `gradient_checkpointing_ratio` and heterogenous shard policy for llama (#5508)
* feat: add `GradientCheckpointConfig` and `PipelineGradientCheckpointConfig`
* feat: apply `GradientCheckpointConfig` to policy and llama_forward
* feat: move `distribute_layer` and `get_stage_index` to PipelineStageManager
* fix: add optional args for `distribute_layer` and `get_stage_index`
* fix: fix changed API calls
* test: update llama tests
* style: polish `GradientCheckpointConfig`
* fix: fix pipeline utils tests
* fix incorrect sharding without zero (#5545)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [shardformer] Sequence Parallelism Optimization (#5533)
* sequence parallel optimization
* validate sequence parallel in llama (code to be polished)
* shardformer api writing
* integrate sequence parallel in ShardFormer
* fix pp bugs and sp bugs for LlaMa model
* integrating ring-based sequence parallelism into ShardFormer
* [sequence parallelism]: Add fused megatron function
* integrating ring-based sequence parallelism into ShardFormer
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* fix bugs when useing sp and flashattention together
* fix operation function name
* support flash attention for ulysses-style sp
* clarify sp process group
* fix compatibility bugs in moe plugin
* fix fused linear bugs
* fix linear layer test
* support gpt model all-to-all sp
* modify shard data dimension (meant to be dim=-1)
* support megtron-style sp and distributed attn for llama model
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* finish sp mode 3 support for gpt
* using all_to_all_single when batch size is 1
* support mode 2 sp in gpt2 (#5)
* [shardformer] add megatron sp to llama
* support llama7B 128k with distributed attention
* [shardformer] robustness enhancement
* add block attn
* sp mode 1: keep input as a complete sequence
* fix sp compatability
* refactor ring implementation
* support mode 2 sp in gpt2
* polish code
* enable distributed attn mask when using sp mode 2 and 3 in llama
* automatically enable flash attn when using sp mode 2 and 3 in llama
* inplace attn mask
* add zero2 support for sequence parallel
* polish code
* fix bugs
* fix gemini checkpoint io
* loose tensor checking atol and rtol
* add comment
* fix llama layernorm grad
* fix zero grad
* fix zero grad
* fix conflict
* update split and gather auto grad func
* sequence parallel: inside text split (#6)
* polish code (part 1)
* polish code (part 2)
* polish code (part 2.5)
* polish code (part 3)
* sequence parallel: inside text split
* miscellaneous minor fixes
* polish code
* fix ulysses style ZeRO
* sequence parallel: inside text split
* miscellaneous minor fixes
* disaggregate sp group and dp group for sp
* fix llama and gpt sp
* polish code
* move ulysses grad sync to ddp (#9)
* remove zero_stage and unbind the grad sync for alltoall sp
* add 2d group creation test
* move ulysses grad sync to ddp
* add 2d group creation test
* remove useless code
* change shard config not to enable sp when enable_all_optimizations
* add sp warnings for several model
* remove useless code
---------
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
* [hotfix] quick fixes to make legacy tutorials runnable (#5559)
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
* [fix] fix typo s/muiti-node /multi-node etc. (#5448)
* [hotfix] fix typo s/get_defualt_parser /get_default_parser (#5548)
* [devops] remove post commit ci (#5566)
* [devops] remove post commit ci
* [misc] run pre-commit on all files
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
---------
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
* [shardformer]enable padding vocabulary size. (#5489)
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
* fix
fix
fix
* fix gather output
* fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* revert
* padding vocab
* padding vocabe
* fix
* fix
* fxi
* test ci
* fix
fix
fix
fix
* fix
fix
* fix
* fix
* Update hybrid_parallel_plugin.py
fix
fix
fix
* fix
fix
* fix
fix
* fix
* resolve super init
resolve super init
resolve super init
resolve super init
* resolve comments
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* vocab checkpointio
* padding vocab_size when using pipeline parallellism
padding vocab_size when using pipeline parallellism
fix
fix
* fix
fix
fix
* fix
* fix
fix resize embedding
fix resize embedding
* fix resize embedding
fix
* revert
* revert
* padding vocab
* fix
* fix
fix
* fix
fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix ci
* fix
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
* cherry-pick
* revert moe modify
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix
fix
fix
fix
fix
fix
fix
fix
* resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
* ptensor
ptensor
resolve comments
fix
fix
fix
fix
fix
resolve comments
resolve comments
resolve comments
resolve comments
resolve comments
---------
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* fix rebase
* fix rebase
---------
Co-authored-by: Hongxin Liu <lhx0217@gmail.com>
Co-authored-by: digger yu <digger-yu@outlook.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: Yuanheng Zhao <54058983+yuanheng-zhao@users.noreply.github.com>
Co-authored-by: Wenhao Chen <cwher@outlook.com>
Co-authored-by: Rocky Duan <dementrock@users.noreply.github.com>
Co-authored-by: Edenzzzz <wtan45@wisc.edu>
Co-authored-by: Edenzzzz <wenxuan.tan@wisc.edu>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions <github-actions@github.com>
Co-authored-by: Insu Jang <insujang@umich.edu>
Co-authored-by: YeAnbang <44796419+YeAnbang@users.noreply.github.com>
Co-authored-by: Tong Li <tong.li352711588@gmail.com>
Co-authored-by: Zhongkai Zhao <kanezz620@gmail.com>
Co-authored-by: linsj20 <linsj20@mails.tsinghua.edu.cn>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-04-18 08:10:18 +00:00
|
|
|
|
|
|
|
def tie_weight_check(self):
|
|
|
|
input_embedding = self.model.get_input_embeddings()
|
|
|
|
output_embedding = self.model.get_output_embeddings()
|
|
|
|
return (
|
|
|
|
input_embedding is not None
|
|
|
|
and output_embedding is not None
|
|
|
|
and id(input_embedding.weight) == id(output_embedding.weight)
|
|
|
|
)
|