[shardformer/sequence parallel] Cherry pick commit to new branch (#4450)

* [shardformer/sequence parallel] Support sequence parallel for gpt2 (#4384)

* [sequence parallel] add sequence parallel linear col/row support (#4336)

* add sequence parallel linear col/row support

* add annotation

* add annotation

* add support for gpt2 fused qkv linear layer

* support sequence parallel in GPT2

* add docstring and note

* add requirments

* remove unused flash-attb

* modify flash attn test

* modify flash attn setting

* modify flash attn code

* add assert before divide, rename forward function

* [shardformer/test] fix gpt2 test with seq-parallel

* [shardformer/sequence parallel] Overlap input gather and grad computation during col backward (#4401)

* overlap gather input / grad computing during col backward

* modify test for overlap

* simplify code

* fix code and modify cuda stream synchronize

* [shardformer/sequence parallel] polish code
pull/4446/head
Bin Jia 2023-08-16 15:41:20 +08:00 committed by GitHub
parent d20dceb9a3
commit 424629fea0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 655 additions and 65 deletions

View File

@ -152,6 +152,7 @@ class HybridParallelPlugin(PipelinePluginBase):
enable_fused_normalization: bool = False,
enable_flash_attention: bool = False,
enable_jit_fused: bool = False,
enable_sequence_parallelism: bool = False,
num_microbatches: Optional[int] = None,
initial_scale: float = 2**16,
min_scale: float = 1,
@ -178,6 +179,7 @@ class HybridParallelPlugin(PipelinePluginBase):
self.enable_fused_normalization = enable_fused_normalization
self.enable_flash_attention = enable_flash_attention
self.enable_jit_fused = enable_jit_fused
self.enable_sequence_parallelism = enable_sequence_parallelism
self.pg_mesh = ProcessGroupMesh(self.dp_size, self.pp_size, self.tp_size)
self.stage_manager = None
self.schedule = None
@ -195,7 +197,8 @@ class HybridParallelPlugin(PipelinePluginBase):
enable_all_optimization=self.enable_all_optimization,
enable_fused_normalization=self.enable_fused_normalization,
enable_flash_attention=self.enable_flash_attention,
enable_jit_fused=self.enable_jit_fused)
enable_jit_fused=self.enable_jit_fused,
enable_sequence_parallelism=enable_sequence_parallelism)
self.amp_config = dict(
initial_scale=initial_scale,
growth_factor=growth_factor,

View File

@ -1,3 +1,5 @@
from typing import Any
import torch
import torch.distributed as dist
import torch.nn.functional as F
@ -141,6 +143,215 @@ class LinearWithAsyncCommunication(torch.autograd.Function):
return grad_input, grad_weight, grad_bias, None, None, None
class _LinearWithGatherForwardReduceScatterBackward(torch.autograd.Function):
"""Gather input from sequence parallel in forward and reduce-scatter gradient in backward
Args:
input_ (`torch.Tensor`): The input tensor from sequence parallel region.
process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication.
overlap (`bool`): Whther to overlap the all_gather op and gradient calculate in backward.
"""
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim, overlap):
ctx.save_for_backward(input_, weight)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_reduce_scatter = async_grad_reduce_scatter
ctx.dim = dim
ctx.overlap = overlap
input_parallel = _gather(input_, dim, process_group)
if bias is not None:
output = F.linear(input_parallel, weight, bias)
else:
output = F.linear(input_parallel, weight)
return output
@staticmethod
def backward(ctx, grad_output):
input_, weight = ctx.saved_tensors
use_bias = ctx.use_bias
dim = ctx.dim
process_group = ctx.process_group
overlap = ctx.overlap
if not overlap:
# TODO: overlap SP input with gradient computation
input_parallel = _gather(input_, dim, process_group)
total_input = input_parallel
grad_input = grad_output.matmul(weight)
grad_output = grad_output.contiguous()
# Convert the tensor shapes to 2D for execution compatibility
if len(grad_output.shape) > 2:
grad_output = grad_output.view(-1, grad_output.shape[-1])
total_input = total_input.view(-1, total_input.shape[-1])
# TODO: overlap SP input with gradient computation
if ctx.async_grad_reduce_scatter:
# Asynchronous reduce-scatter
input_list = [
item.contiguous() for item in torch.chunk(grad_input, dist.get_world_size(process_group), dim=dim)
]
output = torch.empty(input_.shape, dtype=input_parallel.dtype,
device=input_parallel.device).contiguous()
handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True)
# Delay the start of weight gradient computation shortly (3us) to have
# reduce-scatter scheduled first and have GPU resources allocated
_ = torch.empty(1, device=grad_output.device) + 1
grad_weight = grad_output.t().matmul(total_input)
grad_bias = grad_output.sum(dim=0) if use_bias else None
if ctx.async_grad_reduce_scatter:
handle.wait()
else:
# create new stream for calculate the gradient
calculate_stream = torch.cuda.Stream()
# do all gather in default stream
input_ = input_.contiguous()
world_size = dist.get_world_size(process_group)
rank = dist.get_rank(process_group)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
gather_handle = dist.all_gather(tensor_list, input_, group=process_group, async_op=True)
# calculate gradient in calculate_stream
with torch.cuda.stream(calculate_stream):
# calculate
grad_input = grad_output.matmul(weight)
grad_output = grad_output.contiguous()
# Convert the tensor shapes to 2D for execution compatibility
if len(grad_output.shape) > 2:
grad_output = grad_output.view(-1, grad_output.shape[-1])
grad_bias = grad_output.sum(dim=0) if use_bias else None
# prepare data
input_list = [
item.contiguous() for item in torch.chunk(grad_input, dist.get_world_size(process_group), dim=dim)
]
output = torch.empty(input_.shape, dtype=input_.dtype, device=input_.device).contiguous()
torch.cuda.current_stream().wait_stream(calculate_stream)
reducescatter_handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True)
with torch.cuda.stream(calculate_stream):
input_parallel = torch.cat(tensor_list, dim=dim).contiguous()
if len(input_parallel.shape) > 2:
input_parallel = input_parallel.view(-1, input_parallel.shape[-1])
print(grad_output.shape, input_parallel.shape)
grad_weight = grad_output.t().matmul(input_parallel)
torch.cuda.current_stream().wait_stream(calculate_stream)
return output, grad_weight, grad_bias, None, None, None, None
class _LinearWithReduceScatterForwardGatherBackward(torch.autograd.Function):
"""Gather input from sequence parallel in forward and reduce-scatter gradient in backward
Args:
input_ (`torch.Tensor`): The input tensor from sequence parallel region.
process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication.
"""
@staticmethod
def forward(ctx, input_, process_group, dim):
ctx.dim = dim
ctx.process_group = process_group
# do reduce-scatter
new_shape = list(input_.shape)
assert new_shape[dim] % dist.get_world_size(process_group) == 0, \
f'The dimension to split ({new_shape[dim]}) is not a multiple of tensor parallel size ({dist.get_world_size(process_group)}). '
new_shape[dim] = new_shape[dim] // dist.get_world_size(process_group)
input_list = [item.contiguous() for item in torch.chunk(input_, dist.get_world_size(process_group), dim=dim)]
output = torch.empty(new_shape, dtype=input_.dtype, device=input_.device)
dist.reduce_scatter(output, input_list, group=process_group)
return output
@staticmethod
def backward(ctx, grad_output):
dim = ctx.dim
process_group = ctx.process_group
return _gather(grad_output, dim, process_group), None, None
class _MatmulWithGatherForwardReduceScatterBackward(torch.autograd.Function):
"""
This class is designed for matmul operation with gather forward and reduce-scatter backward.
Args:
input_ (`torch.Tensor`): input matrix.
dim (int): the dimension to perform split and gather
process_group (`torch.distributed.ProcessGroup`): the process group used for collective communication
"""
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_reduce_scatter, dim):
ctx.save_for_backward(input_, weight)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_reduce_scatter = async_grad_reduce_scatter
ctx.dim = dim
input_parallel = _gather(input_, dim, process_group)
output = torch.matmul(input_parallel, weight)
if bias is not None:
output = output + bias
return output
@staticmethod
def backward(ctx, grad_output):
input_, weight = ctx.saved_tensors
use_bias = ctx.use_bias
dim = ctx.dim
process_group = ctx.process_group
# TODO: overlap SP input with gradient computation
input_parallel = _gather(input_, dim, process_group)
total_input = input_parallel
grad_input = grad_output.matmul(weight.T)
grad_output = grad_output.contiguous()
# Convert the tensor shapes to 2D for execution compatibility
if len(grad_output.shape) > 2:
grad_output = grad_output.view(-1, grad_output.shape[-1])
total_input = total_input.view(-1, total_input.shape[-1])
# TODO: overlap SP input with gradient computation
if ctx.async_grad_reduce_scatter:
# Asynchronous reduce-scatter
input_list = [
item.contiguous() for item in torch.chunk(grad_input, dist.get_world_size(process_group), dim=dim)
]
output = torch.empty(input_.shape, dtype=input_parallel.dtype, device=input_parallel.device).contiguous()
handle = dist.reduce_scatter(output, input_list, group=process_group, async_op=True)
# Delay the start of weight gradient computation shortly (3us) to have
# reduce-scatter scheduled first and have GPU resources allocated
_ = torch.empty(1, device=grad_output.device) + 1
grad_weight = total_input.t().matmul(grad_output)
grad_bias = grad_output.sum(dim=0) if use_bias else None
if ctx.async_grad_reduce_scatter:
handle.wait()
return output, grad_weight, grad_bias, None, None, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
Split the input and keep only the corresponding chuck to the rank.
@ -200,6 +411,26 @@ class _ReduceBackward(torch.autograd.Function):
return _reduce(grad_output, ctx.process_group), None
class _GatherForwardSplitBackward(torch.autograd.Function):
"""Gather the input from model parallel region and concatenate.
Args:
input_: input matrix.
parallel_mode: parallel mode.
dim: dimension
"""
@staticmethod
def forward(ctx, input_, dim, process_group):
ctx.process_group = process_group
ctx.dim = dim
return _gather(input_, dim, process_group)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.dim, ctx.process_group), None, None
def _reduce(input_, process_group):
# skip if only one rank involved
if dist.get_world_size(process_group) == 1:
@ -235,6 +466,7 @@ def _gather(input_, dim=-1, process_group=None):
return input_
# all gather
input_ = input_.contiguous()
rank = dist.get_rank(process_group)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
@ -246,24 +478,27 @@ def _gather(input_, dim=-1, process_group=None):
return output
class _GatherForwardSplitBackward(torch.autograd.Function):
"""Gather the input from model parallel region and concatenate.
def _reduce_scatter(input_, dim=1, process_group=None):
""" Do reduce-scatter operation.
Args:
input_: input matrix.
parallel_mode: parallel mode.
dim: dimension
input_ (`torch.Tensor`): The input tensor from sequence parallel region.
dim (int): The dimension to perform reduce-scatter.
process_group (`torch.distributed.ProcessGroup`): The process group used for collective communication.
"""
world_size = dist.get_world_size(process_group)
if world_size == 1:
return input_
@staticmethod
def forward(ctx, input_, dim, process_group):
ctx.process_group = process_group
ctx.dim = dim
return _gather(input_, dim, process_group)
# reduce-scatter
new_shape = list(input_.shape)
assert new_shape[dim] % dist.get_world_size(process_group) == 0, \
f'The dimension to split ({new_shape[dim]}) is not a multiple of tensor parallel size ({dist.get_world_size(process_group)}). '
new_shape[dim] = new_shape[dim] // world_size
output = torch.empty(new_shape, dtype=input_.dtype, device=input_.device)
dist.reduce_scatter(output, input_, group=process_group)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.dim, ctx.process_group), None, None
return output
def matmul_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce):
@ -274,6 +509,21 @@ def linear_with_async_comm(input_, weight, bias, process_group, async_grad_allre
return LinearWithAsyncCommunication.apply(input_, weight, bias, process_group, async_grad_allreduce)
def linear_gather_forward_reducescatter_backward(input_, weight, bias, process_group, async_grad_reduce_scatter, dim,
overlap):
return _LinearWithGatherForwardReduceScatterBackward.apply(input_, weight, bias, process_group,
async_grad_reduce_scatter, dim, overlap)
def linear_reducescatter_forward_gather_backward(input_, process_group, dim):
return _LinearWithReduceScatterForwardGatherBackward.apply(input_, process_group, dim)
def matmul_gather_forward_reducescatter_backward(input_, weight, bias, process_group, async_grad_reduce_scatter, dim):
return _MatmulWithGatherForwardReduceScatterBackward.apply(input_, weight, bias, process_group,
async_grad_reduce_scatter, dim)
def gather_forward_split_backward(input_, dim, process_group):
return _GatherForwardSplitBackward.apply(input_, dim, process_group)

View File

@ -24,6 +24,8 @@ from colossalai.tensor.d_tensor.api import (
from ._operation import (
gather_forward_split_backward,
linear_gather_forward_reducescatter_backward,
linear_reducescatter_forward_gather_backward,
linear_with_async_comm,
reduce_forward,
split_forward_gather_backward,
@ -50,6 +52,8 @@ class Linear1D_Col(ParallelModule):
gather_output (bool, optional): If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is :math:`Y_i = XA_i`, defaults to False
seq_parallel (`bool`): If set to ``True``, it will use sequence parallel, defaults to False.
overlap (`bool`): If set to ``True``, it will overlap input all-gather with gradient computation during backward, defaults to False.
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
weight_initializer (`typing.Callable`):
@ -69,6 +73,8 @@ class Linear1D_Col(ParallelModule):
device: torch.device = None,
process_group: ProcessGroup = None,
gather_output: bool = False,
seq_parallel: bool = False,
overlap: bool = False,
skip_bias_add: bool = False,
weight: Optional[Parameter] = None,
bias_: Optional[Parameter] = None,
@ -80,6 +86,8 @@ class Linear1D_Col(ParallelModule):
self.in_features = in_features
self.out_features = out_features
self.gather_output = gather_output
self.seq_parallel = seq_parallel
self.overlap = overlap
self.skip_bias_add = skip_bias_add
self.device = device
self.process_group = process_group
@ -180,7 +188,11 @@ class Linear1D_Col(ParallelModule):
# Matrix multiply.
bias = self.bias if not self.skip_bias_add else None
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True)
if self.seq_parallel:
output_parallel = linear_gather_forward_reducescatter_backward(input_parallel, self.weight, bias,
self.process_group, True, 1, self.overlap)
else:
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True)
if self.gather_output:
# All-gather across the partitions.
@ -203,6 +215,8 @@ class Linear1D_Row(ParallelModule):
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``.
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
parallel_input (bool): If set to ``True``, it's assumed that the input is split, defaults to False.
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
seq_parallel (`bool`): If set to ``True``, it will use sequence parallel, defaults to False.
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
weight_initializer (:class:`typing.Callable`, optional):
@ -221,6 +235,7 @@ class Linear1D_Row(ParallelModule):
dtype: torch.dtype = None,
device: torch.device = None,
process_group: ProcessGroup = None,
seq_parallel: bool = False,
parallel_input: bool = True,
skip_bias_add: bool = False,
weight: Optional[Parameter] = None,
@ -238,6 +253,7 @@ class Linear1D_Row(ParallelModule):
self.parallel_input = parallel_input
self.skip_bias_add = skip_bias_add
self.process_group = process_group
self.seq_parallel = seq_parallel
self.num_partitions = dist.get_world_size(self.process_group)
if skip_bias_add and not bias:
@ -373,7 +389,10 @@ class Linear1D_Row(ParallelModule):
output = torch.cat(output_parallel_list, dim=-1)
else:
output_parallel = F.linear(input_, self.weight)
output = reduce_forward(output_parallel, self.process_group)
if self.seq_parallel:
output = linear_reducescatter_forward_gather_backward(output_parallel, self.process_group, 1)
else:
output = reduce_forward(output_parallel, self.process_group)
if not self.skip_bias_add:
if self.bias is not None:

View File

@ -25,7 +25,9 @@ from colossalai.tensor.d_tensor.api import (
from ._operation import (
gather_forward_split_backward,
linear_reducescatter_forward_gather_backward,
linear_with_async_comm,
matmul_gather_forward_reducescatter_backward,
matmul_with_async_comm,
reduce_backward,
reduce_forward,
@ -150,6 +152,7 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
device (`torch.device`): The device of parameters, defaults to None.
n_fused (int): The number items fused, defaults to 3 (QKV).
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None.
seq_parallel (`bool`): If set to ``True``, it will use sequence parallel, defaults to False.
gather_output (bool, optional): If true, call all-gather on output and make Y available
to all GPUs, otherwise, every GPU will have its output
which is :math:`Y_i = XA_i`, defaults to False
@ -173,6 +176,7 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
process_group: ProcessGroup = None,
async_communication: bool = False,
gather_output: bool = False,
seq_parallel: bool = False,
skip_bias_add: bool = False,
n_fused: int = 3,
weight: Optional[Parameter] = None,
@ -185,6 +189,7 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
self.in_features = in_features
self.out_features = out_features
self.gather_output = gather_output
self.seq_parallel = seq_parallel
self.skip_bias_add = skip_bias_add
self.device = device
self.n_fused = n_fused
@ -296,15 +301,19 @@ class GPT2FusedLinearConv1D_Col(ParallelModule):
assert input_.shape[-1] == self.weight.shape[0], \
'Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.'.format(
input_.shape, self.weight.shape, self.weight.shape[-1])
# Set up backprop all-reduce.
input_parallel = reduce_backward(input_, self.process_group)
# input_parallel = input_
# Matrix multiply.
bias = self.bias if not self.skip_bias_add else None
output_parallel = matmul_with_async_comm(input_parallel, self.weight, bias, self.process_group,
self.async_communication)
if self.seq_parallel:
input_parallel = input_
output_parallel = matmul_gather_forward_reducescatter_backward(input_parallel, self.weight, bias,
self.process_group, True, 1)
else:
# Set up backprop all-reduce.
input_parallel = reduce_backward(input_, self.process_group)
output_parallel = matmul_with_async_comm(input_parallel, self.weight, bias, self.process_group,
self.async_communication)
if self.gather_output:
# All-gather across the partitions.
@ -329,6 +338,7 @@ class GPT2FusedLinearConv1D_Row(ParallelModule):
dtype (`torch.dtype`): The dtype of parameters, defaults to None.
parallel_input (bool): If set to ``True``, it's assumed that the input is split, defaults to False.
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer,
seq_parallel (`bool`): If set to ``True``, it will use sequence parallel, defaults to False.
which is preserved for kernel fusion, defaults to False
weight_initializer (:class:`typing.Callable`, optional):
The initializer of weight, defaults to kaiming uniform initializer.
@ -346,6 +356,7 @@ class GPT2FusedLinearConv1D_Row(ParallelModule):
dtype: torch.dtype = None,
device: torch.device = None,
process_group: ProcessGroup = None,
seq_parallel: bool = False,
parallel_input: bool = True,
skip_bias_add: bool = False,
weight: Optional[Parameter] = None,
@ -363,6 +374,7 @@ class GPT2FusedLinearConv1D_Row(ParallelModule):
self.parallel_input = parallel_input
self.skip_bias_add = skip_bias_add
self.process_group = process_group
self.seq_parallel = seq_parallel
self.num_partitions = dist.get_world_size(self.process_group)
if skip_bias_add and not bias:
@ -499,7 +511,10 @@ class GPT2FusedLinearConv1D_Row(ParallelModule):
output = torch.cat(output_parallel_list, dim=-1)
else:
output_parallel = torch.matmul(input_, self.weight)
output = reduce_forward(output_parallel, self.process_group)
if self.seq_parallel:
output = linear_reducescatter_forward_gather_backward(output_parallel, self.process_group, 1)
else:
output = reduce_forward(output_parallel, self.process_group)
if not self.skip_bias_add:
if self.bias is not None:

View File

@ -0,0 +1,222 @@
# this code is modified from transformers.models.gpt2.modeling_gpt2
# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/gpt2/modeling_gpt2.py#L670
from typing import Optional, Tuple, Union
import torch
import torch.distributed as dist
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
from transformers.utils import logging
from colossalai.shardformer.layer._operation import gather_forward_split_backward, split_forward_gather_backward
from colossalai.shardformer.shard import ShardConfig
logger = logging.get_logger(__name__)
# TODO: put all contents in `gpt2.py` and make it compatible with pipeline
def gpt2_sequence_parallel_forward_fn(shard_config: ShardConfig):
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (output_hidden_states
if output_hidden_states is not None else self.config.output_hidden_states)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if position_ids is not None:
position_ids = position_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
# GPT2Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
# split the input tensor along sequence dimension
# [batch_size, seq_len, hidden_size] -> [batch_size, seq_len/TP_size, hidden_size]
hidden_states = split_forward_gather_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
# When sequence parallelism done, gather the output tensor in forward and split it in backward
hidden_states = gather_forward_split_backward(hidden_states,
dim=1,
process_group=shard_config.tensor_parallel_process_group)
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
return forward

View File

@ -11,17 +11,12 @@ from torch.nn import Module
from colossalai.pipeline.stage_manager import PipelineStageManager
from ..layer.parallel_module import ParallelModule
from ..shard.shard_config import ShardConfig
__all__ = ["ParallelModule", "SubModuleReplacementDescription", "ModulePolicyDescription", "Policy"]
class ParallelModule():
def __init__(self):
pass
@dataclass
class SubModuleReplacementDescription:
r"""
@ -231,3 +226,22 @@ class Policy(ABC):
end_idx = num_layers_per_stage_accumulated[stage + 1]
return [start_idx, end_idx]
def append_seq_parallel_to_policy(
self,
suffix_list: List[str],
module_policy_description: ModulePolicyDescription,
):
r"""
Append the sequence parallel policy to the policy for the given key.
Args:
suffix_list (List[str]): the suffix list of the module to be parallelized
policy (Dict[Union[str, nn.Module], ModulePolicyDescription]): the policy to be updated
"""
for sub_description in module_policy_description.sub_module_replacement:
if (sub_description.suffix in suffix_list):
if sub_description.kwargs is None:
sub_description.kwargs = {}
sub_description.kwargs["seq_parallel"] = True

View File

@ -7,6 +7,7 @@ import colossalai.shardformer.layer as col_nn
from .._utils import getattr_, setattr_
from ..modeling.gpt2 import GPT2PipelineForwards, get_gpt2_flash_attention_forward
from ..modeling.gpt2_seq import gpt2_sequence_parallel_forward_fn
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = [
@ -49,6 +50,9 @@ class GPT2Policy(Policy):
target_module=col_nn.DropoutForParallelInput,
),
])
if self.shard_config.enable_sequence_parallelism:
policy[GPT2Model].method_replacement = {"forward": gpt2_sequence_parallel_forward_fn(self.shard_config)}
policy[GPT2Block] = ModulePolicyDescription(attribute_replacement={
"attn.embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"attn.split_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
@ -120,6 +124,11 @@ class GPT2Policy(Policy):
policy[GPT2Attention] = ModulePolicyDescription(method_replacement={
'forward': get_gpt2_flash_attention_forward(),
})
if self.shard_config.enable_sequence_parallelism:
suffix_list = ["attn.c_attn", "attn.c_proj", "mlp.c_fc", "mlp.c_proj"]
self.append_seq_parallel_to_policy(suffix_list=suffix_list, module_policy_description=policy[GPT2Block])
return policy
def postprocess(self):

View File

@ -28,6 +28,7 @@ class ShardConfig:
enable_all_optimization: bool = False
enable_flash_attention: bool = False
enable_jit_fused: bool = False
enable_sequence_parallelism: bool = False
# pipeline_parallel_size: int
# data_parallel_size: int

View File

@ -53,8 +53,7 @@ def rearrange(tensor: torch.Tensor, dim: int):
return rearanged_tensor
@parameterize('lazy_init', [False, True])
def check_linear_conv_1d_col(lazy_init: bool):
def check_linear_conv_1d_col(lazy_init: bool, seq_parallel: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear = Conv1D(192, 48).cuda()
with ctx:
@ -62,6 +61,7 @@ def check_linear_conv_1d_col(lazy_init: bool):
linear_conv_col = GPT2FusedLinearConv1D_Col.from_native_module(linear_copy,
process_group=None,
gather_output=True,
seq_parallel=seq_parallel,
n_fused=3)
assert linear.weight.shape == torch.Size([48, 192])
@ -76,10 +76,11 @@ def check_linear_conv_1d_col(lazy_init: bool):
linear.load_state_dict(linear_conv_col.state_dict())
# check computation correctness
x = torch.rand(4, 48).cuda()
x = torch.rand(1, 4, 48).cuda()
out = linear(x)
gather_out = linear_conv_col(x)
assert_close(rearrange(out, 1), gather_out)
x_for_shard = x.expand_as(x.clone()) if seq_parallel is False else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()]
gather_out = linear_conv_col(x_for_shard)
assert_close(rearrange(out, -1), gather_out)
# check backward correctness
out.sum().backward()
@ -89,14 +90,16 @@ def check_linear_conv_1d_col(lazy_init: bool):
assert_close(target_grad, linear_conv_col.weight.grad)
@parameterize('lazy_init', [False, True])
def check_linear_conv_1d_row(lazy_init: bool):
def check_linear_conv_1d_row(lazy_init: bool, seq_parallel: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear = Conv1D(192, 48).cuda()
with ctx:
linear_copy = Conv1D(192, 48).cuda()
linear_row = GPT2FusedLinearConv1D_Row.from_native_module(linear_copy, process_group=None, parallel_input=False)
linear_row = GPT2FusedLinearConv1D_Row.from_native_module(linear_copy,
process_group=None,
parallel_input=False,
seq_parallel=seq_parallel)
assert linear.weight.shape == torch.Size([48, 192])
assert linear_row.weight.shape == torch.Size([24, 192])
@ -109,10 +112,11 @@ def check_linear_conv_1d_row(lazy_init: bool):
linear.load_state_dict(linear_row.state_dict())
# check computation correctness
x = torch.rand(4, 48).cuda()
x = torch.rand(1, 4, 48).cuda()
out = linear(x)
gather_out = linear_row(x)
assert_close(out, gather_out)
target_out = out if seq_parallel is False else torch.chunk(out.clone(), 2, dim=1)[dist.get_rank()]
assert_close(target_out, gather_out)
# check backward correctness
out.sum().backward()
@ -123,12 +127,18 @@ def check_linear_conv_1d_row(lazy_init: bool):
assert_close(target_grad, linear_row.weight.grad)
@parameterize('lazy_init', [False, True])
@parameterize('seq_parallel', [False, True])
def check_gpt2_qkv_fused_linear_1d(lazy_init: bool, seq_parallel: bool):
check_linear_conv_1d_col(lazy_init, seq_parallel)
check_linear_conv_1d_row(lazy_init, seq_parallel)
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# test for linear conv
check_linear_conv_1d_col()
check_linear_conv_1d_row()
check_gpt2_qkv_fused_linear_1d()
@rerun_if_address_is_in_use()

View File

@ -12,13 +12,16 @@ from colossalai.tensor.d_tensor import is_distributed_tensor
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
@parameterize('lazy_init', [False, True])
def check_linear_1d_col(lazy_init: bool):
def check_linear_1d_col(lazy_init: bool, seq_parallel: bool, overlap: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear = nn.Linear(32, 128).cuda()
with ctx:
linear_copy = nn.Linear(32, 128).cuda()
linear_col = Linear1D_Col.from_native_module(linear_copy, process_group=None, gather_output=True)
linear_col = Linear1D_Col.from_native_module(linear_copy,
process_group=None,
gather_output=True,
seq_parallel=seq_parallel,
overlap=overlap)
# ensure that the parameters are distributed
assert is_distributed_tensor(linear_col.weight)
@ -35,10 +38,11 @@ def check_linear_1d_col(lazy_init: bool):
linear_col.load_state_dict(linear.state_dict())
# check computation correctness
x = torch.rand(4, 32).cuda()
# [batch_size, seq_len, hidden_size]
x = torch.rand(2, 4, 32).cuda()
x_for_unshard = x.expand_as(x.clone())
x_for_unshard.requires_grad_(True)
x_for_shard = x.expand_as(x.clone())
x_for_shard = x.expand_as(x.clone()) if seq_parallel is False else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()]
x_for_shard.requires_grad_(True)
out = linear(x_for_unshard)
@ -56,17 +60,21 @@ def check_linear_1d_col(lazy_init: bool):
# check the input gradients
assert x_for_shard.grad is not None
assert x_for_unshard.grad is not None
assert_close(x_for_unshard.grad, x_for_shard.grad)
target_unshard_gard = x_for_unshard.grad if seq_parallel is False else torch.chunk(
x_for_unshard.grad.clone(), 2, dim=1)[dist.get_rank()]
assert_close(target_unshard_gard, x_for_shard.grad)
@parameterize('lazy_init', [False, True])
def check_linear_1d_row(lazy_init: bool):
def check_linear_1d_row(lazy_init: bool, seq_parallel: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear = nn.Linear(32, 128).cuda()
with ctx:
linear_copy = nn.Linear(32, 128).cuda()
linear_row = Linear1D_Row.from_native_module(linear_copy, process_group=None, parallel_input=False)
linear_row = Linear1D_Row.from_native_module(linear_copy,
process_group=None,
parallel_input=False,
seq_parallel=seq_parallel)
assert linear_row.weight.shape == torch.Size([128, 16])
assert linear_row.bias.shape == torch.Size([128])
@ -77,7 +85,8 @@ def check_linear_1d_row(lazy_init: bool):
linear_row.load_state_dict(linear.state_dict())
# check computation correctness
x = torch.rand(4, 32).cuda()
# [batch_size, seq_len, hidden_size]
x = torch.rand(2, 4, 32).cuda()
x_for_unshard = x.expand_as(x.clone())
x_for_unshard.requires_grad_(True)
x_for_shard = x.expand_as(x.clone())
@ -86,7 +95,8 @@ def check_linear_1d_row(lazy_init: bool):
# run forward
out = linear(x_for_unshard)
gather_out = linear_row(x_for_shard)
assert_close(out, gather_out)
target_out = out if seq_parallel is False else torch.chunk(out.clone(), 2, dim=1)[dist.get_rank()]
assert_close(target_out, gather_out)
# check backward correctness
out.sum().backward()
@ -102,8 +112,7 @@ def check_linear_1d_row(lazy_init: bool):
assert_close(x_for_unshard.grad, x_for_shard.grad)
@parameterize('lazy_init', [False, True])
def check_linear_col_plus_row(lazy_init: bool):
def check_linear_col_plus_row(lazy_init: bool, seq_parallel: bool, overlap: bool):
ctx = LazyInitContext() if lazy_init else nullcontext()
linear_1 = nn.Linear(32, 128).cuda()
@ -112,8 +121,15 @@ def check_linear_col_plus_row(lazy_init: bool):
with ctx:
linear_1_copy = nn.Linear(32, 128).cuda()
linear_2_copy = nn.Linear(128, 32).cuda()
linear_col = Linear1D_Col.from_native_module(linear_1_copy, process_group=None, gather_output=False)
linear_row = Linear1D_Row.from_native_module(linear_2_copy, process_group=None, parallel_input=True)
linear_col = Linear1D_Col.from_native_module(linear_1_copy,
process_group=None,
gather_output=False,
seq_parallel=seq_parallel,
overlap=overlap)
linear_row = Linear1D_Row.from_native_module(linear_2_copy,
process_group=None,
parallel_input=True,
seq_parallel=seq_parallel)
linear_1.load_state_dict(linear_col.state_dict())
linear_col.load_state_dict(linear_1.state_dict())
@ -121,16 +137,18 @@ def check_linear_col_plus_row(lazy_init: bool):
linear_row.load_state_dict(linear_2.state_dict())
# check computation correctness
x = torch.rand(4, 32).cuda()
# [batch_size, seq_len, hidden_size]
x = torch.rand(2, 4, 32).cuda()
x_for_unshard = x.expand_as(x.clone())
x_for_unshard.requires_grad_(True)
x_for_shard = x.expand_as(x.clone())
x_for_shard = x.expand_as(x.clone()) if seq_parallel is False else torch.chunk(x.clone(), 2, dim=1)[dist.get_rank()]
x_for_shard.requires_grad_(True)
# run forward
unshard_out = linear_2(linear_1(x_for_unshard))
shard_out = linear_row(linear_col(x_for_shard))
assert_close(unshard_out, shard_out)
target_out = unshard_out if seq_parallel is False else torch.chunk(unshard_out.clone(), 2, dim=1)[dist.get_rank()]
assert_close(target_out, shard_out)
# check backward correctness
unshard_out.sum().backward()
@ -143,19 +161,28 @@ def check_linear_col_plus_row(lazy_init: bool):
# check the input gradients
assert x_for_shard.grad is not None
assert x_for_unshard.grad is not None
assert_close(x_for_unshard.grad, x_for_shard.grad)
target_unshard_gard = x_for_unshard.grad if seq_parallel is False else torch.chunk(
x_for_unshard.grad.clone(), 2, dim=1)[dist.get_rank()]
assert_close(target_unshard_gard, x_for_shard.grad)
def run_dist(rank, world_size, port):
@parameterize('lazy_init', [False, True])
@parameterize('seq_parallel', [False, True])
@parameterize('overlap', [False, True])
def run_dist_linear_test(lazy_init, seq_parallel, overlap):
check_linear_1d_col(lazy_init, seq_parallel, overlap)
check_linear_1d_row(lazy_init, seq_parallel)
check_linear_col_plus_row(lazy_init, seq_parallel, overlap)
def check_dist_linear(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
check_linear_1d_col()
check_linear_1d_row()
check_linear_col_plus_row()
run_dist_linear_test()
@rerun_if_address_is_in_use()
def test_linear():
spawn(run_dist, nprocs=2)
spawn(check_dist_linear, nprocs=2)
if __name__ == '__main__':

View File

@ -1,4 +1,5 @@
import copy
import math
from contextlib import nullcontext
from typing import Any, Callable, Dict, List, Optional
@ -25,6 +26,7 @@ def build_model(model_fn,
enable_tensor_parallelism=True,
enable_flash_attention=False,
enable_jit_fused=False,
enable_sequence_parallelism=False,
use_lazy_init: bool = False):
# create new model
ctx = LazyInitContext() if use_lazy_init else nullcontext()
@ -38,7 +40,8 @@ def build_model(model_fn,
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism,
enable_flash_attention=enable_flash_attention,
enable_jit_fused=enable_jit_fused)
enable_jit_fused=enable_jit_fused,
enable_sequence_parallelism=enable_sequence_parallelism)
model_copy = copy.deepcopy(org_model)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model, shared_params = shard_former.optimize(model_copy)
@ -135,6 +138,16 @@ def run_forward_backward_with_hybrid_plugin(org_model: Module, sharded_model: Mo
return loss
data = data_gen_fn()
if booster.plugin.enable_sequence_parallelism and booster.plugin.tp_size != 0:
seq_len = data['input_ids'].shape[1]
lcm = booster.plugin.tp_size * seq_len // math.gcd(booster.plugin.tp_size, seq_len)
times = lcm // seq_len
input_shape = data['input_ids'].shape
for k, v in data.items():
if v.shape == input_shape:
data[k] = v.repeat(1, times)
sharded_model.train()
if booster.plugin.stage_manager is not None:
for k, v in data.items():

View File

@ -106,6 +106,13 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
'enable_all_optimization': True,
'use_lazy_init': False,
'precision': 'fp32',
}, {
'tp_size': 4,
'pp_size': 1,
'enable_all_optimization': False,
'use_lazy_init': True,
'enable_sequence_parallelism': True,
'precision': 'fp32',
}])
@clear_cache_before_run()
def run_gpt2_test(test_config):