Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
|
|
|
import torch.nn as nn
|
|
|
|
from torch import Tensor
|
|
|
|
from typing import Iterable, Any
|
|
|
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
|
|
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
from colossalai.utils import conditional_context
|
|
|
|
from colossalai.engine import BaseGradientHandler
|
|
|
|
|
|
|
|
|
|
|
|
class GradAccumOptimizer(ColossalaiOptimizer):
|
2021-12-13 14:07:01 +00:00
|
|
|
"""A wrapper for the optimizer to enable gradient accumulation by skipping the steps
|
|
|
|
before accumulation size is reached
|
|
|
|
|
2022-01-21 02:44:30 +00:00
|
|
|
:param optim: Your optimizer object
|
2021-12-13 14:07:01 +00:00
|
|
|
:type optim: :class:`torch.optim.Optimizer`
|
2022-01-21 02:44:30 +00:00
|
|
|
:param accumulate_size: The number of steps to accumulate gradients
|
|
|
|
:type accumulate_size: int
|
|
|
|
:param model: Your model object to check if it is DDP for special handling of no_sync() context
|
2021-12-13 14:07:01 +00:00
|
|
|
:type model: :class:`torch.nn.Module`
|
|
|
|
|
|
|
|
"""
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
|
|
|
def __init__(self, optim: Optimizer, accumulate_size: int, model: nn.Module = None):
|
|
|
|
super().__init__(optim)
|
|
|
|
self.accumulate_size = accumulate_size
|
|
|
|
self.accumulate_step = 0
|
|
|
|
|
|
|
|
# handle pytorch ddp auto all reduce
|
|
|
|
self.model = model
|
|
|
|
self.is_torch_ddp = isinstance(self.model, DistributedDataParallel)
|
|
|
|
|
|
|
|
def zero_grad(self, *args, **kwargs):
|
|
|
|
if self.accumulate_step == 0:
|
|
|
|
self.optim.zero_grad(*args, **kwargs)
|
|
|
|
|
|
|
|
def step(self, *args, **kwargs):
|
|
|
|
if self.accumulate_step < self.accumulate_size:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
self.accumulate_step = 0
|
|
|
|
return self.optim.step(*args, **kwargs)
|
|
|
|
|
|
|
|
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
|
|
|
if self.accumulate_step < self.accumulate_size:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
self.optim.clip_grad_norm(model, max_norm)
|
|
|
|
|
|
|
|
def backward(self, loss: Tensor):
|
|
|
|
self.accumulate_step += 1
|
|
|
|
|
|
|
|
if self.is_torch_ddp:
|
|
|
|
no_sync = self.accumulate_step < self.accumulate_size
|
|
|
|
with conditional_context(self.model.no_sync(), enable=no_sync):
|
|
|
|
scaled_loss = loss / self.accumulate_size
|
|
|
|
self.optim.backward(scaled_loss)
|
|
|
|
else:
|
|
|
|
scaled_loss = loss / self.accumulate_size
|
|
|
|
self.optim.backward(scaled_loss)
|
|
|
|
|
|
|
|
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
|
2021-12-30 07:56:46 +00:00
|
|
|
self.accumulate_step += 1
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
no_sync = self.is_torch_ddp and self.accumulate_step < self.accumulate_size
|
|
|
|
|
|
|
|
if no_sync:
|
|
|
|
with self.model.no_sync():
|
|
|
|
self.optim.backward_by_grad(tensor, grad)
|
|
|
|
else:
|
|
|
|
self.optim.backward_by_grad(tensor, grad)
|
|
|
|
|
|
|
|
|
2022-01-21 02:44:30 +00:00
|
|
|
class GradAccumDataloader:
|
2021-12-13 14:07:01 +00:00
|
|
|
"""A wrapper for dataloder to enable gradient accumulation by dropping the last incomplete steps.
|
|
|
|
|
|
|
|
For example, if a dataloader has 10 batches of data and accumulate size is 4. The model paramters will
|
|
|
|
be update only twice at step 4 and step 8. The last two batches of data do not form a complete 4-step cycle.
|
|
|
|
Thus, they will be automatically skipped by this class. If the dataloader is not standard PyTorch dataloader,
|
|
|
|
(e.g. Dali dataloader), this class will automatically consume (load data for nothing) the remaining 2 batches.
|
2021-12-30 07:56:46 +00:00
|
|
|
|
2022-01-21 02:44:30 +00:00
|
|
|
:param dataloader: Your dataloader object
|
2021-12-13 14:07:01 +00:00
|
|
|
:type dataloader: Iterable
|
2022-01-21 02:44:30 +00:00
|
|
|
:param accumulate_size: The number of steps to accumulate gradients
|
|
|
|
:type accumulate_size: int
|
2021-12-13 14:07:01 +00:00
|
|
|
|
|
|
|
"""
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
|
|
|
def __init__(self, dataloader: Iterable, accumulate_size: int) -> None:
|
|
|
|
self.dataloader = dataloader
|
|
|
|
self.consume_remain_data = not isinstance(dataloader, DataLoader)
|
|
|
|
self.steps_per_epoch = len(dataloader) - len(dataloader) % accumulate_size
|
|
|
|
|
|
|
|
def __getattr__(self, __name: str) -> Any:
|
|
|
|
return getattr(self.dataloader, __name)
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.steps_per_epoch
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
self._cur_step = 0
|
|
|
|
self._dataiter = iter(self.dataloader)
|
|
|
|
return self
|
|
|
|
|
|
|
|
def __next__(self) -> Any:
|
|
|
|
if self._cur_step < self.steps_per_epoch:
|
|
|
|
self._cur_step += 1
|
|
|
|
|
|
|
|
if self._cur_step == self.steps_per_epoch and self.consume_remain_data:
|
|
|
|
# this is to handle non standard pytorch dataloader
|
|
|
|
# such as dali dataloader
|
|
|
|
while True:
|
|
|
|
try:
|
|
|
|
_ = next(self._dataiter)
|
|
|
|
except StopIteration:
|
|
|
|
break
|
|
|
|
return next(self._dataiter)
|
|
|
|
else:
|
|
|
|
raise StopIteration
|
|
|
|
|
|
|
|
|
|
|
|
class GradAccumLrSchedulerByStep(_LRScheduler):
|
2021-12-13 14:07:01 +00:00
|
|
|
"""A wrapper for the LR scheduler to enable gradient accumulation by skipping the steps
|
|
|
|
before accumulation size is reached
|
|
|
|
|
2022-01-21 02:44:30 +00:00
|
|
|
:param lr_scheduler: Your lr scheduler object
|
2021-12-13 14:07:01 +00:00
|
|
|
:type lr_scheduler: :class:`torch.optim.lr_scheduler._LRScheduler`
|
2022-01-21 02:44:30 +00:00
|
|
|
:param accumulate_size: The number of steps to accumulate gradients
|
|
|
|
:type accumulate_size: int
|
2021-12-13 14:07:01 +00:00
|
|
|
|
|
|
|
"""
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
|
|
|
def __init__(self, lr_scheduler: _LRScheduler, accumulate_size: int) -> None:
|
|
|
|
self.lr_scheduler = lr_scheduler
|
|
|
|
self.accumulate_size = accumulate_size
|
|
|
|
self.accumulate_step = 0
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def compute_effective_steps_per_epoch(dataloader: Iterable, accumulate_size: int):
|
|
|
|
return len(dataloader) // accumulate_size
|
|
|
|
|
|
|
|
def __getattr__(self, __name: str) -> Any:
|
|
|
|
return getattr(self.lr_scheduler, __name)
|
|
|
|
|
|
|
|
def step(self, *args, **kwargs):
|
|
|
|
self.accumulate_step += 1
|
|
|
|
if self.accumulate_step < self.accumulate_size:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
self.accumulate_step = 0
|
|
|
|
self.lr_scheduler.step(*args, **kwargs)
|
|
|
|
|
|
|
|
def get_lr(self):
|
|
|
|
return self.lr_scheduler.get_lr()
|
|
|
|
|
|
|
|
def get_last_lr(self):
|
|
|
|
return self.lr_scheduler.get_last_lr()
|
|
|
|
|
|
|
|
def print_lr(self, *args, **kwargs):
|
|
|
|
self.lr_scheduler.print_lr(*args, **kwargs)
|
|
|
|
|
|
|
|
def state_dict(self) -> dict:
|
|
|
|
return self.lr_scheduler.state_dict()
|
|
|
|
|
|
|
|
def load_state_dict(self, state_dict: dict) -> None:
|
|
|
|
self.lr_scheduler.load_state_dict(state_dict)
|
|
|
|
|
|
|
|
|
2022-01-21 02:44:30 +00:00
|
|
|
class GradAccumGradientHandler:
|
2021-12-13 14:07:01 +00:00
|
|
|
"""A wrapper for the gradient handler to enable gradient accumulation by skipping the steps
|
|
|
|
before accumulation size is reached
|
|
|
|
|
2022-01-21 02:44:30 +00:00
|
|
|
:param grad_handler: Your gradient handler object
|
2021-12-13 14:07:01 +00:00
|
|
|
:type grad_handler: :class:`colossalai.engine.BaseGradientHandler`
|
2022-01-21 02:44:30 +00:00
|
|
|
:param accumulate_size: The number of steps to accumulate gradients
|
|
|
|
:type accumulate_size: int
|
2021-12-13 14:07:01 +00:00
|
|
|
|
|
|
|
"""
|
Develop/experiments (#59)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
* Split conv2d, class token, positional embedding in 2d, Fix random number in ddp
Fix convergence in cifar10, Imagenet1000
* Integrate 1d tensor parallel in Colossal-AI (#39)
* fixed 1D and 2D convergence (#38)
* optimized 2D operations
* fixed 1D ViT convergence problem
* Feature/ddp (#49)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* support torch ddp
* fix loss accumulation
* add log for ddp
* change seed
* modify timing hook
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* Feature/pipeline (#40)
* remove redundancy func in setup (#19) (#20)
* use env to control the language of doc (#24) (#25)
* Support TP-compatible Torch AMP and Update trainer API (#27)
* Add gradient accumulation, fix lr scheduler
* fix FP16 optimizer and adapted torch amp with tensor parallel (#18)
* fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes
* fixed trainer
* Revert "fixed trainer"
This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097.
* improved consistency between trainer, engine and schedule (#23)
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
* add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29)
* add explanation for ViT example (#35) (#36)
* optimize communication of pipeline parallel
* fix grad clip for pipeline
Co-authored-by: Frank Lee <somerlee.9@gmail.com>
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
* optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51)
* Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset
* update api for better usability (#58)
update api for better usability
Co-authored-by: 1SAA <c2h214748@gmail.com>
Co-authored-by: ver217 <lhx0217@gmail.com>
Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com>
Co-authored-by: binmakeswell <binmakeswell@gmail.com>
Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com>
Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
|
|
|
|
|
|
|
def __init__(self, grad_handler: BaseGradientHandler, accumulate_size: int) -> None:
|
|
|
|
assert isinstance(grad_handler, BaseGradientHandler), \
|
|
|
|
f'expected grad_handler to be type BaseGradientHandler, but got {type(grad_handler)}'
|
|
|
|
self.grad_handler = grad_handler
|
|
|
|
self.accumulate_size = accumulate_size
|
|
|
|
self.accumulate_step = 0
|
|
|
|
|
|
|
|
def handle_gradient(self):
|
|
|
|
self.accumulate_step += 1
|
|
|
|
if self.accumulate_step < self.accumulate_size:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
self.accumulate_step = 0
|
|
|
|
self.grad_handler.handle_gradient()
|