mirror of https://github.com/hpcaitech/ColossalAI
155 lines
5.1 KiB
Python
155 lines
5.1 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
|
||
|
import torch.nn as nn
|
||
|
from torch import Tensor
|
||
|
from typing import Iterable, Any
|
||
|
from colossalai.nn.optimizer import ColossalaiOptimizer
|
||
|
from torch.nn.parallel.distributed import DistributedDataParallel
|
||
|
from torch.optim import Optimizer
|
||
|
from torch.optim.lr_scheduler import _LRScheduler
|
||
|
from torch.utils.data import DataLoader
|
||
|
from colossalai.utils import conditional_context
|
||
|
from colossalai.engine import BaseGradientHandler
|
||
|
|
||
|
|
||
|
class GradAccumOptimizer(ColossalaiOptimizer):
|
||
|
|
||
|
def __init__(self, optim: Optimizer, accumulate_size: int, model: nn.Module = None):
|
||
|
super().__init__(optim)
|
||
|
self.accumulate_size = accumulate_size
|
||
|
self.accumulate_step = 0
|
||
|
|
||
|
# handle pytorch ddp auto all reduce
|
||
|
self.model = model
|
||
|
self.is_torch_ddp = isinstance(self.model, DistributedDataParallel)
|
||
|
|
||
|
def zero_grad(self, *args, **kwargs):
|
||
|
if self.accumulate_step == 0:
|
||
|
self.optim.zero_grad(*args, **kwargs)
|
||
|
|
||
|
def step(self, *args, **kwargs):
|
||
|
if self.accumulate_step < self.accumulate_size:
|
||
|
return None
|
||
|
else:
|
||
|
self.accumulate_step = 0
|
||
|
return self.optim.step(*args, **kwargs)
|
||
|
|
||
|
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
||
|
if self.accumulate_step < self.accumulate_size:
|
||
|
pass
|
||
|
else:
|
||
|
self.optim.clip_grad_norm(model, max_norm)
|
||
|
|
||
|
def backward(self, loss: Tensor):
|
||
|
self.accumulate_step += 1
|
||
|
|
||
|
if self.is_torch_ddp:
|
||
|
no_sync = self.accumulate_step < self.accumulate_size
|
||
|
with conditional_context(self.model.no_sync(), enable=no_sync):
|
||
|
scaled_loss = loss / self.accumulate_size
|
||
|
self.optim.backward(scaled_loss)
|
||
|
else:
|
||
|
scaled_loss = loss / self.accumulate_size
|
||
|
self.optim.backward(scaled_loss)
|
||
|
|
||
|
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
|
||
|
no_sync = self.is_torch_ddp and self.accumulate_step < self.accumulate_size
|
||
|
|
||
|
if no_sync:
|
||
|
with self.model.no_sync():
|
||
|
self.optim.backward_by_grad(tensor, grad)
|
||
|
else:
|
||
|
self.optim.backward_by_grad(tensor, grad)
|
||
|
|
||
|
|
||
|
class GradAccumDataloader():
|
||
|
|
||
|
def __init__(self, dataloader: Iterable, accumulate_size: int) -> None:
|
||
|
self.dataloader = dataloader
|
||
|
self.consume_remain_data = not isinstance(dataloader, DataLoader)
|
||
|
self.steps_per_epoch = len(dataloader) - len(dataloader) % accumulate_size
|
||
|
|
||
|
def __getattr__(self, __name: str) -> Any:
|
||
|
return getattr(self.dataloader, __name)
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.steps_per_epoch
|
||
|
|
||
|
def __iter__(self):
|
||
|
self._cur_step = 0
|
||
|
self._dataiter = iter(self.dataloader)
|
||
|
return self
|
||
|
|
||
|
def __next__(self) -> Any:
|
||
|
if self._cur_step < self.steps_per_epoch:
|
||
|
self._cur_step += 1
|
||
|
|
||
|
if self._cur_step == self.steps_per_epoch and self.consume_remain_data:
|
||
|
# this is to handle non standard pytorch dataloader
|
||
|
# such as dali dataloader
|
||
|
while True:
|
||
|
try:
|
||
|
_ = next(self._dataiter)
|
||
|
except StopIteration:
|
||
|
break
|
||
|
return next(self._dataiter)
|
||
|
else:
|
||
|
raise StopIteration
|
||
|
|
||
|
|
||
|
class GradAccumLrSchedulerByStep(_LRScheduler):
|
||
|
|
||
|
def __init__(self, lr_scheduler: _LRScheduler, accumulate_size: int) -> None:
|
||
|
self.lr_scheduler = lr_scheduler
|
||
|
self.accumulate_size = accumulate_size
|
||
|
self.accumulate_step = 0
|
||
|
|
||
|
@staticmethod
|
||
|
def compute_effective_steps_per_epoch(dataloader: Iterable, accumulate_size: int):
|
||
|
return len(dataloader) // accumulate_size
|
||
|
|
||
|
def __getattr__(self, __name: str) -> Any:
|
||
|
return getattr(self.lr_scheduler, __name)
|
||
|
|
||
|
def step(self, *args, **kwargs):
|
||
|
self.accumulate_step += 1
|
||
|
if self.accumulate_step < self.accumulate_size:
|
||
|
pass
|
||
|
else:
|
||
|
self.accumulate_step = 0
|
||
|
self.lr_scheduler.step(*args, **kwargs)
|
||
|
|
||
|
def get_lr(self):
|
||
|
return self.lr_scheduler.get_lr()
|
||
|
|
||
|
def get_last_lr(self):
|
||
|
return self.lr_scheduler.get_last_lr()
|
||
|
|
||
|
def print_lr(self, *args, **kwargs):
|
||
|
self.lr_scheduler.print_lr(*args, **kwargs)
|
||
|
|
||
|
def state_dict(self) -> dict:
|
||
|
return self.lr_scheduler.state_dict()
|
||
|
|
||
|
def load_state_dict(self, state_dict: dict) -> None:
|
||
|
self.lr_scheduler.load_state_dict(state_dict)
|
||
|
|
||
|
|
||
|
class GradAccumGradientHandler():
|
||
|
|
||
|
def __init__(self, grad_handler: BaseGradientHandler, accumulate_size: int) -> None:
|
||
|
assert isinstance(grad_handler, BaseGradientHandler), \
|
||
|
f'expected grad_handler to be type BaseGradientHandler, but got {type(grad_handler)}'
|
||
|
self.grad_handler = grad_handler
|
||
|
self.accumulate_size = accumulate_size
|
||
|
self.accumulate_step = 0
|
||
|
|
||
|
def handle_gradient(self):
|
||
|
self.accumulate_step += 1
|
||
|
if self.accumulate_step < self.accumulate_size:
|
||
|
pass
|
||
|
else:
|
||
|
self.accumulate_step = 0
|
||
|
self.grad_handler.handle_gradient()
|