ColossalAI/colossalai/zero/sharded_optim/_utils.py

289 lines
10 KiB
Python
Raw Normal View History

import math
import torch
from torch._six import inf
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
from colossalai.utils import is_model_parallel_parameter
import torch.distributed as dist
def move_tensor(input_, device):
assert device in ['cpu', 'gpu']
if isinstance(input_, (list, tuple)):
for tensor in input_:
tensor.data = tensor.data.cpu(
) if device == 'cpu' else tensor.data.cuda()
elif torch.is_tensor(input_):
input_.data = input_.data.cpu(
) if device == 'cpu' else tensor.data.cuda()
else:
raise TypeError(
f"Expected argument 'input_' to be torch.Tensor, list or tuple, but got {type(input_)} "
)
def flatten(input_):
return _flatten_dense_tensors(input_)
def unflatten(flat, tensors):
return _unflatten_dense_tensors(flat, tensors)
def count_numel(tensor_list):
res = 0
for tensor in tensor_list:
res += tensor.numel()
return res
def calculate_padding(numel, unit_size):
remainder = numel % unit_size
return unit_size - remainder if remainder else remainder
def shuffle_by_round_robin(tensor_list, num_partitions):
partitions = dict()
for tensor_idx, tensor in enumerate(tensor_list):
partition_to_go = tensor_idx % num_partitions
if partition_to_go not in partitions:
partitions[partition_to_go] = []
partitions[partition_to_go].append(dict(tensor=tensor,
index=tensor_idx))
partitions_count = len(partitions)
new_tensor_list = []
tensor_index_mapping = dict()
for partition_id in range(partitions_count):
partition_tensors = partitions[partition_id]
for item in partition_tensors:
tensor_index_mapping[item['index']] = len(new_tensor_list)
new_tensor_list.append(item['tensor'])
return new_tensor_list, tensor_index_mapping
# create a flat tensor aligned at the alignment boundary
def flatten_dense_tensors_with_padding(tensor_list, unit_size):
num_elements = count_numel(tensor_list)
padding = calculate_padding(num_elements, unit_size=unit_size)
if padding > 0:
pad_tensor = torch.zeros(padding,
device=tensor_list[0].device,
dtype=tensor_list[0].dtype)
padded_tensor_list = tensor_list + [pad_tensor]
else:
padded_tensor_list = tensor_list
return flatten(padded_tensor_list)
def is_nccl_aligned(tensor):
return tensor.data_ptr() % 4 == 0
def get_grad_accumulate_object(tensor):
"""
Return the AccumulateGrad of the input tensor
"""
# grad_fn reference:
# https://discuss.pytorch.org/t/in-the-grad-fn-i-find-a-next-functions-but-i-dont-understand-the-meaning-of-the-attribute/24463
# expand_as reference: https://pytorch.org/docs/stable/generated/torch.Tensor.expand.html#torch.Tensor.expand
#
# `next_functions` will return the backward graph where
# the first element is the AccumulateGrad of the leaf nodes.
# we want to get the AccumulateGrad of the input tensor instead of the leaf
# node in the whole computation graph.
# Therefore, we call expand_as to create a dummy graph
# where tensor_tmp and tensor indeed point to the same object.
# You can check this by print(tensor.data_ptr() == tensor_tmp.data_ptr())
tensor_tmp = tensor.expand_as(tensor)
grad_acc_obj = tensor_tmp.grad_fn.next_functions[0][0]
return grad_acc_obj
def split_half_float_double(tensor_list):
dtypes = [
"torch.cuda.HalfTensor", "torch.cuda.FloatTensor",
"torch.cuda.DoubleTensor", "torch.cuda.BFloat16Tensor"
]
buckets = []
for i, dtype in enumerate(dtypes):
bucket = [t for t in tensor_list if t.type() == dtype]
if bucket:
buckets.append(bucket)
return buckets
def reduce_tensor(tensor,
dtype,
dst_rank=None,
parallel_mode=ParallelMode.DATA):
"""
Reduce the tensor in the data parallel process group
:param tensor: A tensor object to reduce/all-reduce
:param dtype: The data type used in communication
:param dst_rank: The source rank for reduce. If dst_rank is None,
all-reduce will be used instead of reduce. Default is None.
:type tensor: torch.Tensor
:type dtype: torch.dtype
:type dst_rank: int, optional
"""
# cast the data to specified dtype for reduce/all-reduce
if tensor.dtype != dtype:
tensor_to_reduce = tensor.to(dtype)
else:
tensor_to_reduce = tensor
world_size = gpc.get_world_size(parallel_mode)
group = gpc.get_group(parallel_mode)
tensor_to_reduce.div_(world_size)
# if rank is None, all reduce will be used
# else, reduce is used
use_all_reduce = dst_rank is None
if use_all_reduce:
dist.all_reduce(tensor_to_reduce, group=group)
else:
ranks_in_group = gpc.get_ranks_in_group(parallel_mode)
global_rank = ranks_in_group[dst_rank]
dist.reduce(tensor=tensor_to_reduce, dst=global_rank, group=group)
# recover the original dtype
if tensor.dtype != dtype and tensor is not tensor_to_reduce:
local_rank = gpc.get_local_rank(parallel_mode)
if use_all_reduce or dst_rank == local_rank:
tensor.copy_(tensor_to_reduce)
return tensor
def has_inf_or_nan(tensor):
try:
# if tensor is half, the .float() incurs an additional deep copy, but it's necessary if
# Pytorch's .sum() creates a one-element tensor of the same type as tensor
# (which is true for some recent version of pytorch).
tensor_sum = float(tensor.float().sum())
# More efficient version that can be used if .sum() returns a Python scalar
# tensor_sum = float(tensor.sum())
except RuntimeError as instance:
# We want to check if inst is actually an overflow exception.
# RuntimeError could come from a different error.
# If so, we still want the exception to propagate.
if "value cannot be converted" not in instance.args[0]:
raise
return True
else:
if tensor_sum == float('inf') or tensor_sum == -float(
'inf') or tensor_sum != tensor_sum:
return True
return False
def release_param_grad(tensor_list):
for tensor in tensor_list:
tensor.grad = None
def calculate_global_norm_from_list(norm_list):
""" Compute total from a list of norms
"""
total_norm = 0.0
for norm in norm_list:
total_norm += norm**2.0
return math.sqrt(total_norm)
def compute_norm(gradients,
params,
dp_group,
mp_group,
norm_type=2):
"""Clips gradient norm of an iterable of parameters.
This is adapted from torch.nn.utils.clip_grad.clip_grad_norm_ and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the parameters (viewed as a single vector).
"""
if mp_group is None:
mp_rank = 0
else:
mp_rank = dist.get_rank(mp_group)
norm_type = float(norm_type)
if norm_type == inf:
total_norm = max(g.data.abs().max() for g in gradients)
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
dist.all_reduce(total_norm_cuda,
op=torch.distributed.ReduceOp.MAX,
group=dp_group)
# Take max across all GPUs.
if mp_group is not None:
dist.all_reduce(tensor=total_norm_cuda,
op=torch.distributed.ReduceOp.MAX)
total_norm = total_norm_cuda[0].item()
else:
total_norm = 0.0
# if dist.get_rank() == 0:
# logger.info(f"Total Norm beginning {total_norm}")
for g, p in zip(gradients, params):
# Pipeline parallelism may replicate parameters. Avoid multi-counting.
if is_model_parallel_parameter(p) or mp_rank == 0:
param_norm = g.data.double().norm(2)
total_norm += param_norm.item()**2
# Sum across all model parallel GPUs.
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
torch.distributed.all_reduce(total_norm_cuda,
op=torch.distributed.ReduceOp.SUM,
group=dp_group)
if mp_group is not None:
dist.all_reduce(tensor=total_norm_cuda,
op=torch.distributed.ReduceOp.SUM)
total_norm = total_norm_cuda[0].item()**(1. / norm_type)
if total_norm == float(
'inf') or total_norm == -float('inf') or total_norm != total_norm:
total_norm = -1
return total_norm
def sync_param(flat_tensor, tensor_list):
"""
Synchronize the flattened tensor and unflattened tensor list. When
a list of tensor are flattened with `torch._utils._unflatten_dense_tensors`,
a new tensor is created. Thus, the flat tensor and original tensor list do not
share the same memory space. This function will update the tensor list so that
they point to the same value.
:param flat_tensor: A flat tensor obtained by calling `torch._utils._unflatten_dense_tensors` on a tensor lsit
:param tensor_list: A list of tensors corresponding to the flattened tensor
:type flat_tensor: torch.Tensor
:type tensor_list: List[torch.Tensor]
"""
updated_params = unflatten(flat_tensor, tensor_list)
# update the tensor data
for p, q in zip(tensor_list, updated_params):
p.data = q.data