2022-03-04 03:49:02 +00:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
|
|
|
|
import copy
|
|
|
|
from functools import partial
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.multiprocessing as mp
|
|
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
from colossalai.utils import free_port
|
|
|
|
from colossalai.zero.sharded_model import ShardedModelV2
|
|
|
|
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
|
|
|
from torch.optim import Adam
|
|
|
|
|
2022-03-04 05:40:48 +00:00
|
|
|
from common import (CONFIG, Net, check_grads, check_grads_padding, check_params, check_sharded_params_padding)
|
2022-03-04 03:49:02 +00:00
|
|
|
|
|
|
|
|
|
|
|
def run_step(model, optimizer, x, enable_autocast=False):
|
|
|
|
model.train()
|
2022-03-04 05:40:48 +00:00
|
|
|
optimizer.zero_grad()
|
2022-03-04 03:49:02 +00:00
|
|
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
|
|
y = model(x)
|
|
|
|
loss = y.sum()
|
|
|
|
loss = loss.float()
|
|
|
|
if isinstance(model, ShardedModelV2):
|
|
|
|
optimizer.backward(loss)
|
|
|
|
else:
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
|
|
|
|
model = Net(checkpoint=True).cuda()
|
|
|
|
zero_model = copy.deepcopy(model)
|
|
|
|
zero_model = ShardedModelV2(zero_model, process_group=gpc.get_group(ParallelMode.DATA))
|
|
|
|
for n, p in zero_model.named_parameters():
|
|
|
|
p._name = n
|
|
|
|
optim = Adam(model.parameters(), lr=1e-3)
|
|
|
|
sharded_optim = ShardedOptimizerV2(Adam(zero_model.parameters(), lr=1e-3), zero_model)
|
|
|
|
|
|
|
|
for _ in range(2):
|
|
|
|
x = torch.rand(2, 5).cuda()
|
|
|
|
run_step(zero_model, sharded_optim, x, False)
|
|
|
|
run_step(model, optim, x, False)
|
|
|
|
if dist.get_world_size() > 1:
|
|
|
|
check_grads_padding(model, zero_model)
|
2022-03-04 05:40:48 +00:00
|
|
|
check_sharded_params_padding(model, zero_model)
|
2022-03-04 03:49:02 +00:00
|
|
|
else:
|
|
|
|
check_grads(model, zero_model)
|
|
|
|
check_params(model, zero_model)
|
|
|
|
|
|
|
|
|
2022-03-08 10:18:06 +00:00
|
|
|
@pytest.mark.skip
|
2022-03-04 03:49:02 +00:00
|
|
|
def test_sharded_optim_v2():
|
|
|
|
world_size = 2
|
|
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_sharded_optim_v2()
|