#!/usr/bin/env python # -*- encoding: utf-8 -*- import copy from functools import partial import colossalai import pytest import torch import torch.distributed as dist import torch.multiprocessing as mp from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc from colossalai.utils import free_port from colossalai.zero.sharded_model import ShardedModelV2 from colossalai.zero.sharded_optim import ShardedOptimizerV2 from torch.optim import Adam from common import (CONFIG, Net, check_grads, check_grads_padding, check_params, check_sharded_params_padding) def run_step(model, optimizer, x, enable_autocast=False): model.train() optimizer.zero_grad() with torch.cuda.amp.autocast(enabled=enable_autocast): y = model(x) loss = y.sum() loss = loss.float() if isinstance(model, ShardedModelV2): optimizer.backward(loss) else: loss.backward() optimizer.step() def run_dist(rank, world_size, port): colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl') model = Net(checkpoint=True).cuda() zero_model = copy.deepcopy(model) zero_model = ShardedModelV2(zero_model, process_group=gpc.get_group(ParallelMode.DATA)) for n, p in zero_model.named_parameters(): p._name = n optim = Adam(model.parameters(), lr=1e-3) sharded_optim = ShardedOptimizerV2(Adam(zero_model.parameters(), lr=1e-3), zero_model) for _ in range(2): x = torch.rand(2, 5).cuda() run_step(zero_model, sharded_optim, x, False) run_step(model, optim, x, False) if dist.get_world_size() > 1: check_grads_padding(model, zero_model) check_sharded_params_padding(model, zero_model) else: check_grads(model, zero_model) check_params(model, zero_model) @pytest.mark.skip def test_sharded_optim_v2(): world_size = 2 run_func = partial(run_dist, world_size=world_size, port=free_port()) mp.spawn(run_func, nprocs=world_size) if __name__ == '__main__': test_sharded_optim_v2()