ColossalAI/colossalai/pipeline/schedule/_utils.py

176 lines
5.1 KiB
Python
Raw Normal View History

from collections import OrderedDict
from typing import Any, List, Optional, Tuple
import torch
import torch.cuda
from torch.nn import Module
from torch.utils._pytree import SUPPORTED_NODES, TreeSpec, _register_pytree_node, tree_flatten, tree_map, tree_unflatten
# this register are for torch under version 1.13.1, maybe removed in the future
def _odict_flatten(d: "OrderedDict[Any, Any]") -> Tuple[List[Any], Any]:
return list(d.values()), list(d.keys())
def _odict_unflatten(values: List[Any], context: Any) -> "OrderedDict[Any, Any]":
return OrderedDict((key, value) for key, value in zip(context, values))
_register_pytree_node(OrderedDict, _odict_flatten, _odict_unflatten)
def tree_map_hf(fn: Any, pytree: Any):
flat_args, spec = tree_flatten_hf(pytree)
return tree_unflatten([fn(i) for i in flat_args], spec)
# use this flatten function to handle the ModelingOutput Class instance.
def tree_flatten_hf(pytree: Any) -> Tuple[List[Any], TreeSpec]:
"""Flattens a pytree into a list of values an a TreeSpec that can be used
to reconstruct the pytree.
"""
if isinstance(pytree, OrderedDict):
node_type = OrderedDict
flatten_fn = SUPPORTED_NODES[node_type].flatten_fn
child_pytrees, context = flatten_fn(pytree)
# Recursively flatten the children
result: List[Any] = []
children_specs: List["TreeSpec"] = []
for child in child_pytrees:
flat, child_spec = tree_flatten_hf(child)
result += flat
children_specs.append(child_spec)
return result, TreeSpec(node_type, context, children_specs)
else:
result, tree_spec = tree_flatten(pytree)
return result, tree_spec
def to_device(x: Any, device: Optional[torch.device] = None) -> Any:
"""Move object to device if it is a tensor.
Args:
x (Any): Object to be moved.
device (Optional[torch.device], optional): Target device. Defaults to None.
Returns:
Any: Moved object.
"""
if isinstance(x, torch.Tensor):
return x.to(device)
return x
def get_batch_size(batch: Any) -> int:
"""Get the batch size (size of dimension-0) of the first tensor in the batch.
Args:
batch (Any): Batch to be inspected.
Raises:
RuntimeError: If no tensor is found in the batch.
Returns:
int: Batch size.
"""
data_list, _ = tree_flatten(batch)
for data in data_list:
if isinstance(data, torch.Tensor):
return data.size(0)
raise RuntimeError("No tensor found in the batch")
def get_micro_batch(batch: Any, start: int, micro_batch_size: int) -> Any:
"""Get a micro batch of the original batch.
Args:
batch (Any): Batch to be sliced.
start (int): Start index of the micro batch.
micro_batch_size (int): Size of the micro batch.
Returns:
Any: Target micro batch.
"""
def _get_tensor_slice(x: Any):
if isinstance(x, torch.Tensor):
return x[start : start + micro_batch_size]
return x
return tree_map(_get_tensor_slice, batch)
def model_forward(model: Module, data: Any, internal_inputs: Optional[dict]) -> Any:
"""Call model forward function with data and internal inputs.
Args:
model (Module): Model to be called.
data (Any): Data loaded from data iterator.
internal_inputs (Optional[dict]): Data from previous stage. It must be a dict or None if it's the first stage.
Returns:
Any: Outputs of the model.
"""
if internal_inputs is None:
internal_inputs = {}
if isinstance(data, (list, tuple)):
return model(*data, **internal_inputs)
elif isinstance(data, dict):
return model(**data, **internal_inputs)
return model(data, **internal_inputs)
def retain_grad(x: Any) -> None:
"""Call retain_grad() on a tensor.
Args:
x (Any): Object to be called.
"""
if isinstance(x, torch.Tensor) and x.requires_grad:
x.retain_grad()
def detach(x: Any) -> Any:
"""Call detach() on a tensor.
Args:
x (Any): Object to be called.
Returns:
Any: The detached object.
"""
if isinstance(x, torch.Tensor):
return x.detach()
return x
def merge_batch(data: List[Any], batch_size_dim=0) -> Any:
"""Merge micro batches into a batch.
Args:
data (List[Any]): A list of micro batches.
Returns:
Any: Merge batch.
"""
if len(data) == 0:
return
flattened_data = []
tree_spec = None
for d in data:
# elems should be an instance of OrderedDict
elems, tree_spec = tree_flatten_hf(d)
flattened_data.append(elems)
merged_data = []
for elem_batch in zip(*flattened_data):
if isinstance(elem_batch[0], torch.Tensor):
if len(elem_batch[0].shape) == 0: # set loss to None in pipeline outputs
merged_data.append(None)
else:
merged_data.append(torch.cat(elem_batch, dim=batch_size_dim))
else:
merged_data.append(list(elem_batch))
return tree_unflatten(merged_data, tree_spec)