|
|
|
import argparse
|
|
|
|
import math
|
|
|
|
import os
|
|
|
|
|
|
|
|
import loralib as lora
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from coati.dataset import DataCollatorForSupervisedDataset, SFTDataset, SupervisedDataset
|
|
|
|
from coati.models import convert_to_lora_module
|
|
|
|
from coati.trainer import SFTTrainer
|
|
|
|
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
|
|
|
|
from datasets import load_dataset
|
|
|
|
from torch.optim import Adam
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
from transformers import AutoTokenizer, BloomConfig, BloomForCausalLM, BloomTokenizerFast, LlamaConfig, LlamaForCausalLM
|
|
|
|
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
|
|
|
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
|
|
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
|
|
|
|
from transformers.models.opt.configuration_opt import OPTConfig
|
|
|
|
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
|
|
|
from transformers.trainer import get_scheduler
|
|
|
|
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
from colossalai.tensor import ColoParameter
|
|
|
|
|
|
|
|
|
|
|
|
def train(args):
|
|
|
|
# configure strategy
|
|
|
|
if args.strategy == 'ddp':
|
|
|
|
strategy = DDPStrategy()
|
|
|
|
elif args.strategy == 'colossalai_gemini':
|
|
|
|
raise NotImplementedError(
|
|
|
|
'Gemini is not supported .from_pretrained() yet. We will update this after checkpoint io is ready.')
|
|
|
|
strategy = GeminiStrategy(placement_policy='cuda')
|
|
|
|
elif args.strategy == 'colossalai_zero2':
|
|
|
|
strategy = LowLevelZeroStrategy(stage=2, placement_policy='cuda')
|
|
|
|
elif args.strategy == 'colossalai_zero2_cpu':
|
|
|
|
strategy = LowLevelZeroStrategy(stage=2, placement_policy='cpu')
|
|
|
|
else:
|
|
|
|
raise ValueError(f'Unsupported strategy "{args.strategy}"')
|
|
|
|
|
|
|
|
# configure model
|
|
|
|
with strategy.model_init_context():
|
|
|
|
if args.model == 'bloom':
|
|
|
|
model = convert_to_lora_module(BloomForCausalLM.from_pretrained(args.pretrain),
|
|
|
|
args.lora_rank).half().cuda()
|
|
|
|
elif args.model == 'opt':
|
|
|
|
model = convert_to_lora_module(OPTForCausalLM.from_pretrained(args.pretrain), args.lora_rank).half().cuda()
|
|
|
|
elif args.model == 'gpt2':
|
|
|
|
model = convert_to_lora_module(GPT2LMHeadModel.from_pretrained(args.pretrain), args.lora_rank).half().cuda()
|
|
|
|
elif args.model == 'llama':
|
|
|
|
model = convert_to_lora_module(LlamaForCausalLM.from_pretrained(args.pretrain),
|
|
|
|
args.lora_rank).half().cuda()
|
|
|
|
else:
|
|
|
|
raise ValueError(f'Unsupported model "{args.model}"')
|
|
|
|
if args.grad_checkpoint:
|
|
|
|
model.gradient_checkpointing_enable()
|
|
|
|
|
|
|
|
# configure tokenizer
|
|
|
|
if args.model == 'gpt2':
|
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
elif args.model == 'bloom':
|
|
|
|
tokenizer = BloomTokenizerFast.from_pretrained('bigscience/bloom-560m')
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
elif args.model == 'opt':
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
|
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
elif args.model == 'llama':
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
args.pretrain,
|
|
|
|
padding_side="right",
|
|
|
|
use_fast=False,
|
|
|
|
)
|
|
|
|
tokenizer.eos_token = '<\s>'
|
|
|
|
tokenizer.pad_token = tokenizer.unk_token
|
|
|
|
else:
|
|
|
|
raise ValueError(f'Unsupported model "{args.model}"')
|
|
|
|
|
|
|
|
if args.model == 'llama' and args.strategy == 'colossalai_gemini':
|
|
|
|
# this is a hack to deal with the resized embedding
|
|
|
|
# to make sure all parameters are ColoParameter for Colossal-AI Gemini Compatibility
|
|
|
|
for name, param in model.named_parameters():
|
|
|
|
if not isinstance(param, ColoParameter):
|
|
|
|
sub_module_name = '.'.join(name.split('.')[:-1])
|
|
|
|
weight_name = name.split('.')[-1]
|
|
|
|
sub_module = model.get_submodule(sub_module_name)
|
|
|
|
setattr(sub_module, weight_name, ColoParameter(param))
|
|
|
|
|
|
|
|
# configure optimizer
|
|
|
|
if args.strategy.startswith('colossalai'):
|
|
|
|
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
|
|
|
|
else:
|
|
|
|
optim = Adam(model.parameters(), lr=args.lr)
|
|
|
|
|
|
|
|
logger = get_dist_logger()
|
|
|
|
|
|
|
|
# configure dataset
|
|
|
|
if args.dataset == 'yizhongw/self_instruct':
|
|
|
|
train_data = load_dataset(args.dataset, 'super_natural_instructions', split='train')
|
|
|
|
eval_data = load_dataset(args.dataset, 'super_natural_instructions', split='test')
|
|
|
|
|
|
|
|
train_dataset = SFTDataset(train_data, tokenizer, args.max_len)
|
|
|
|
eval_dataset = SFTDataset(eval_data, tokenizer, args.max_len)
|
|
|
|
|
|
|
|
else:
|
|
|
|
train_dataset = SupervisedDataset(tokenizer=tokenizer,
|
|
|
|
data_path=args.dataset,
|
|
|
|
max_datasets_size=args.max_datasets_size,
|
|
|
|
max_length=args.max_len)
|
|
|
|
eval_dataset = None
|
|
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
|
|
|
|
|
|
|
if dist.is_initialized() and dist.get_world_size() > 1:
|
|
|
|
train_sampler = DistributedSampler(train_dataset,
|
|
|
|
shuffle=True,
|
|
|
|
seed=42,
|
|
|
|
drop_last=True,
|
|
|
|
rank=dist.get_rank(),
|
|
|
|
num_replicas=dist.get_world_size())
|
|
|
|
if eval_dataset is not None:
|
|
|
|
eval_sampler = DistributedSampler(eval_dataset,
|
|
|
|
shuffle=False,
|
|
|
|
seed=42,
|
|
|
|
drop_last=False,
|
|
|
|
rank=dist.get_rank(),
|
|
|
|
num_replicas=dist.get_world_size())
|
|
|
|
else:
|
|
|
|
train_sampler = None
|
|
|
|
eval_sampler = None
|
|
|
|
|
|
|
|
train_dataloader = DataLoader(train_dataset,
|
|
|
|
shuffle=(train_sampler is None),
|
|
|
|
sampler=train_sampler,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
collate_fn=data_collator,
|
|
|
|
pin_memory=True)
|
|
|
|
if eval_dataset is not None:
|
|
|
|
eval_dataloader = DataLoader(eval_dataset,
|
|
|
|
shuffle=(eval_sampler is None),
|
|
|
|
sampler=eval_sampler,
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
collate_fn=data_collator,
|
|
|
|
pin_memory=True)
|
|
|
|
else:
|
|
|
|
eval_dataloader = None
|
|
|
|
|
|
|
|
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
|
|
|
|
max_steps = math.ceil(args.max_epochs * num_update_steps_per_epoch)
|
|
|
|
lr_scheduler = get_scheduler("cosine",
|
|
|
|
optim,
|
|
|
|
num_warmup_steps=math.ceil(max_steps * 0.03),
|
|
|
|
num_training_steps=max_steps)
|
|
|
|
strategy_dict = strategy.prepare(
|
|
|
|
dict(model=model, optimizer=optim, lr_scheduler=lr_scheduler)
|
|
|
|
)
|
|
|
|
model = strategy_dict['model']
|
|
|
|
optim = strategy_dict['optimizer']
|
|
|
|
lr_scheduler = strategy_dict['lr_scheduler']
|
|
|
|
trainer = SFTTrainer(model=model,
|
|
|
|
strategy=strategy,
|
|
|
|
optim=optim,
|
|
|
|
lr_scheduler=lr_scheduler,
|
|
|
|
max_epochs=args.max_epochs,
|
|
|
|
accumulation_steps=args.accumulation_steps)
|
|
|
|
|
|
|
|
trainer.fit(train_dataloader=train_dataloader,
|
|
|
|
eval_dataloader=eval_dataloader,
|
|
|
|
logger=logger,
|
|
|
|
use_wandb=args.use_wandb)
|
|
|
|
|
|
|
|
# save model checkpoint after fitting on only rank0
|
|
|
|
strategy.save_pretrained(model, path=args.save_path, only_rank0=True, tokenizer=tokenizer)
|
|
|
|
# save optimizer checkpoint on all ranks
|
|
|
|
if args.need_optim_ckpt:
|
|
|
|
strategy.save_optimizer(trainer.optimizer,
|
|
|
|
'rm_optim_checkpoint_%d.pt' % (torch.cuda.current_device()),
|
|
|
|
only_rank0=False)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--strategy',
|
|
|
|
choices=['ddp', 'colossalai_gemini', 'colossalai_zero2', 'colossalai_zero2_cpu'],
|
|
|
|
default='colossalai_zero2')
|
|
|
|
parser.add_argument('--model', choices=['gpt2', 'bloom', 'opt', 'llama'], default='bloom')
|
|
|
|
parser.add_argument('--pretrain', type=str, default=None)
|
|
|
|
parser.add_argument('--dataset', type=str, default=None)
|
|
|
|
parser.add_argument('--max_datasets_size', type=int, default=None)
|
|
|
|
parser.add_argument('--save_path', type=str, default='output')
|
|
|
|
parser.add_argument('--need_optim_ckpt', type=bool, default=False)
|
|
|
|
parser.add_argument('--max_epochs', type=int, default=3)
|
|
|
|
parser.add_argument('--batch_size', type=int, default=4)
|
|
|
|
parser.add_argument('--max_len', type=int, default=512)
|
|
|
|
parser.add_argument('--lora_rank', type=int, default=0, help="low-rank adaptation matrices rank")
|
|
|
|
parser.add_argument('--log_interval', type=int, default=100, help="how many steps to log")
|
|
|
|
parser.add_argument('--lr', type=float, default=5e-6)
|
|
|
|
parser.add_argument('--accumulation_steps', type=int, default=8)
|
|
|
|
parser.add_argument('--use_wandb', default=False, action='store_true')
|
|
|
|
parser.add_argument('--grad_checkpoint', default=False, action='store_true')
|
|
|
|
args = parser.parse_args()
|
|
|
|
train(args)
|