You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/shardformer/policies/opt.py

143 lines
5.4 KiB

from colossalai.shardformer.layer import FusedLayerNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
from .._utils import getattr_, setattr_
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
__all__ = [
'OPTPolicy', 'OPTModelPolicy', 'OPTForCausalLMPolicy', 'OPTForSequenceClassificationPolicy',
'OPTForQuestionAnsweringPolicy'
]
class OPTPolicy(Policy):
def config_sanity_check(self):
pass
def preprocess(self):
# reshape the embedding layer
r"""
Reshape the Embedding layer to make the embedding dimension divisible by world_size
"""
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
return self.model
def module_policy(self):
from transformers.models.opt.modeling_opt import OPTAttention, OPTDecoder, OPTDecoderLayer
base_policy = {
OPTDecoder:
ModulePolicyDescription(sub_module_replacement=[
SubModuleReplacementDescription(
suffix="embed_tokens",
target_module=VocabParallelEmbedding1D,
)
]),
OPTDecoderLayer:
ModulePolicyDescription(sub_module_replacement=[
SubModuleReplacementDescription(
suffix="fc1",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="fc2",
target_module=Linear1D_Row,
)
]),
OPTAttention:
ModulePolicyDescription(attribute_replacement={
"embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size
},
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="q_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="k_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="v_proj",
target_module=Linear1D_Col,
),
SubModuleReplacementDescription(
suffix="out_proj",
target_module=Linear1D_Row,
),
]),
}
# optimization configuration
if self.shard_config.enable_fused_normalization:
base_policy[OPTDecoder].sub_module_replacement.append(
SubModuleReplacementDescription(suffix="final_layer_norm",
target_module=FusedLayerNorm,
ignore_if_not_exist=True))
base_policy[OPTDecoderLayer].sub_module_replacement.extend([
SubModuleReplacementDescription(suffix="self_attn_layer_norm",
target_module=FusedLayerNorm,
ignore_if_not_exist=True),
SubModuleReplacementDescription(suffix="final_layer_norm",
target_module=FusedLayerNorm,
ignore_if_not_exist=True)
])
return base_policy
def postprocess(self):
return self.model
class OPTModelPolicy(OPTPolicy):
def __init__(self) -> None:
super().__init__()
class OPTForCausalLMPolicy(OPTPolicy):
def module_policy(self):
from transformers.models.opt.modeling_opt import OPTForCausalLM
policy = super().module_policy()
new_item = {
OPTForCausalLM:
ModulePolicyDescription(sub_module_replacement=[
SubModuleReplacementDescription(
suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True))
])
}
policy.update(new_item)
return policy
def postprocess(self):
binding_map = {
'model.decoder.embed_tokens': 'lm_head',
}
for k, v in binding_map.items():
src_mod = getattr_(self.model, k)
dst_mod = getattr_(self.model, v)
dst_mod.weight = src_mod.weight
return self.model
class OPTForSequenceClassificationPolicy(OPTPolicy):
def __init__(self) -> None:
super().__init__()
class OPTForQuestionAnsweringPolicy(OPTPolicy):
def __init__(self) -> None:
super().__init__()