2023-01-04 03:38:42 +00:00
|
|
|
import os
|
|
|
|
import re
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
|
|
|
|
def get_cuda_cc_flag() -> List:
|
|
|
|
"""get_cuda_cc_flag
|
|
|
|
|
|
|
|
cc flag for your GPU arch
|
|
|
|
"""
|
2023-01-05 05:53:28 +00:00
|
|
|
|
|
|
|
# only import torch when needed
|
|
|
|
# this is to avoid importing torch when building on a machine without torch pre-installed
|
|
|
|
# one case is to build wheel for pypi release
|
|
|
|
import torch
|
|
|
|
|
2023-01-04 03:38:42 +00:00
|
|
|
cc_flag = []
|
|
|
|
for arch in torch.cuda.get_arch_list():
|
|
|
|
res = re.search(r'sm_(\d+)', arch)
|
|
|
|
if res:
|
|
|
|
arch_cap = res[1]
|
|
|
|
if int(arch_cap) >= 60:
|
|
|
|
cc_flag.extend(['-gencode', f'arch=compute_{arch_cap},code={arch}'])
|
|
|
|
|
|
|
|
return cc_flag
|
|
|
|
|
|
|
|
|
|
|
|
class Builder(object):
|
|
|
|
|
|
|
|
def colossalai_src_path(self, code_path):
|
2023-01-04 08:32:32 +00:00
|
|
|
current_file_path = Path(__file__)
|
|
|
|
if os.path.islink(current_file_path.parent):
|
|
|
|
# symbolic link
|
|
|
|
return os.path.join(current_file_path.parent.parent.absolute(), code_path)
|
2023-01-04 03:38:42 +00:00
|
|
|
else:
|
2023-01-04 08:32:32 +00:00
|
|
|
return os.path.join(current_file_path.parent.parent.absolute(), "colossalai", "kernel", code_path)
|
2023-01-04 03:38:42 +00:00
|
|
|
|
|
|
|
def get_cuda_home_include(self):
|
|
|
|
"""
|
|
|
|
return include path inside the cuda home.
|
|
|
|
"""
|
|
|
|
from torch.utils.cpp_extension import CUDA_HOME
|
|
|
|
if CUDA_HOME is None:
|
|
|
|
raise RuntimeError("CUDA_HOME is None, please set CUDA_HOME to compile C++/CUDA kernels in ColossalAI.")
|
|
|
|
cuda_include = os.path.join(CUDA_HOME, "include")
|
|
|
|
return cuda_include
|
|
|
|
|
|
|
|
# functions must be overrided begin
|
|
|
|
def sources_files(self):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
def include_dirs(self):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
def cxx_flags(self):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
def nvcc_flags(self):
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
|
|
# functions must be overrided over
|
|
|
|
|
|
|
|
def strip_empty_entries(self, args):
|
|
|
|
'''
|
|
|
|
Drop any empty strings from the list of compile and link flags
|
|
|
|
'''
|
|
|
|
return [x for x in args if len(x) > 0]
|
|
|
|
|
|
|
|
def load(self, verbose=True):
|
|
|
|
"""
|
|
|
|
|
|
|
|
load and compile cpu_adam lib at runtime
|
|
|
|
|
|
|
|
Args:
|
|
|
|
verbose (bool, optional): show detailed info. Defaults to True.
|
|
|
|
"""
|
|
|
|
import time
|
|
|
|
|
|
|
|
from torch.utils.cpp_extension import load
|
|
|
|
start_build = time.time()
|
|
|
|
|
|
|
|
op_module = load(name=self.name,
|
|
|
|
sources=self.strip_empty_entries(self.sources_files()),
|
|
|
|
extra_include_paths=self.strip_empty_entries(self.include_dirs()),
|
|
|
|
extra_cflags=self.cxx_flags(),
|
|
|
|
extra_cuda_cflags=self.nvcc_flags(),
|
|
|
|
extra_ldflags=[],
|
|
|
|
verbose=verbose)
|
|
|
|
|
|
|
|
build_duration = time.time() - start_build
|
|
|
|
if verbose:
|
|
|
|
print(f"Time to load {self.name} op: {build_duration} seconds")
|
|
|
|
|
|
|
|
return op_module
|
|
|
|
|
|
|
|
def builder(self, name) -> 'CUDAExtension':
|
|
|
|
"""
|
|
|
|
get a CUDAExtension instance used for setup.py
|
|
|
|
"""
|
|
|
|
from torch.utils.cpp_extension import CUDAExtension
|
|
|
|
|
|
|
|
return CUDAExtension(
|
|
|
|
name=name,
|
|
|
|
sources=[os.path.join('colossalai/kernel/cuda_native/csrc', path) for path in self.sources_files()],
|
|
|
|
include_dirs=self.include_dirs(),
|
|
|
|
extra_compile_args={
|
|
|
|
'cxx': self.cxx_flags(),
|
|
|
|
'nvcc': self.nvcc_flags()
|
|
|
|
})
|