2022-11-08 08:14:07 +00:00
|
|
|
from functools import partial
|
|
|
|
from time import time
|
|
|
|
|
|
|
|
import psutil
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
from packaging import version
|
2022-11-16 03:36:27 +00:00
|
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
2022-11-08 08:14:07 +00:00
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.logging import disable_existing_loggers, get_dist_logger
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
from colossalai.nn.parallel import ZeroDDP
|
2022-11-16 03:36:27 +00:00
|
|
|
from colossalai.tensor import ColoParameter, ComputePattern, ComputeSpec, ProcessGroup, ReplicaSpec, ShardSpec
|
2022-11-08 08:14:07 +00:00
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
|
|
|
from colossalai.zero import ZeroOptimizer
|
|
|
|
from transformers import GPT2Config, GPT2LMHeadModel
|
|
|
|
|
|
|
|
|
2022-11-08 09:17:19 +00:00
|
|
|
def parse_args():
|
|
|
|
parser = colossalai.get_default_parser()
|
2022-11-16 03:36:27 +00:00
|
|
|
parser.add_argument(
|
|
|
|
"--distplan",
|
|
|
|
type=str,
|
|
|
|
default='colossalai',
|
|
|
|
help="The distributed plan [colossalai, ddp, zero].",
|
|
|
|
)
|
2022-11-08 09:17:19 +00:00
|
|
|
parser.add_argument(
|
|
|
|
"--tp_degree",
|
|
|
|
type=int,
|
|
|
|
default=1,
|
2022-11-16 03:36:27 +00:00
|
|
|
help="Tensor Parallelism Degree. Valid when using colossalai as dist plan.",
|
2022-11-08 09:17:19 +00:00
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--placement",
|
|
|
|
type=str,
|
|
|
|
default='cpu',
|
2022-11-16 03:36:27 +00:00
|
|
|
help="Placement Policy for Gemini. Valid when using colossalai as dist plan.",
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
"--shardinit",
|
|
|
|
type=bool,
|
|
|
|
default=False,
|
|
|
|
help=
|
|
|
|
"Shard the tensors when init the model to shrink peak memory size on the assigned device. Valid when using colossalai as dist plan.",
|
2022-11-08 09:17:19 +00:00
|
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
## Parameter Sharding Strategies for Tensor Parallelism
|
|
|
|
def split_param_single_dim_tp1d(dim: int, param: ColoParameter, pg: ProcessGroup):
|
|
|
|
spec = (ShardSpec([dim], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
|
|
|
|
param.set_tensor_spec(*spec)
|
|
|
|
|
|
|
|
|
|
|
|
def split_param_row_tp1d(param: ColoParameter, pg: ProcessGroup):
|
|
|
|
split_param_single_dim_tp1d(0, param, pg)
|
|
|
|
|
|
|
|
|
|
|
|
def split_param_col_tp1d(param: ColoParameter, pg: ProcessGroup):
|
|
|
|
split_param_single_dim_tp1d(-1, param, pg)
|
|
|
|
|
|
|
|
|
|
|
|
## Define the Model and Loss Based on Huggingface transformers GPT2LMHeadModel
|
2022-11-08 08:14:07 +00:00
|
|
|
class GPTLMModel(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
hidden_size=768,
|
|
|
|
num_layers=12,
|
|
|
|
num_attention_heads=12,
|
|
|
|
max_seq_len=1024,
|
|
|
|
vocab_size=50257,
|
|
|
|
checkpoint=False):
|
|
|
|
super().__init__()
|
|
|
|
self.checkpoint = checkpoint
|
|
|
|
self.model = GPT2LMHeadModel(
|
|
|
|
GPT2Config(n_embd=hidden_size,
|
|
|
|
n_layer=num_layers,
|
|
|
|
n_head=num_attention_heads,
|
|
|
|
n_positions=max_seq_len,
|
|
|
|
n_ctx=max_seq_len,
|
|
|
|
vocab_size=vocab_size))
|
|
|
|
if checkpoint:
|
|
|
|
self.model.gradient_checkpointing_enable()
|
|
|
|
|
|
|
|
def forward(self, input_ids, attention_mask):
|
|
|
|
# Only return lm_logits
|
|
|
|
return self.model(input_ids=input_ids, attention_mask=attention_mask, use_cache=not self.checkpoint)[0]
|
|
|
|
|
|
|
|
|
|
|
|
class GPTLMLoss(nn.Module):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.loss_fn = nn.CrossEntropyLoss()
|
|
|
|
|
|
|
|
def forward(self, logits, labels):
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
|
|
# Flatten the tokens
|
|
|
|
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
|
|
|
|
|
|
|
|
2022-11-08 09:17:19 +00:00
|
|
|
## Randomly Generated Data
|
2022-11-08 08:14:07 +00:00
|
|
|
def get_data(batch_size, seq_len, vocab_size):
|
|
|
|
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
|
|
|
|
attention_mask = torch.ones_like(input_ids)
|
|
|
|
return input_ids, attention_mask
|
|
|
|
|
|
|
|
|
|
|
|
def gpt2_medium(checkpoint=False):
|
|
|
|
return GPTLMModel(hidden_size=1024, num_layers=24, num_attention_heads=16, checkpoint=checkpoint)
|
|
|
|
|
|
|
|
|
|
|
|
def gpt2_xl(checkpoint=True):
|
|
|
|
return GPTLMModel(hidden_size=1600, num_layers=48, num_attention_heads=32, checkpoint=checkpoint)
|
|
|
|
|
|
|
|
|
|
|
|
def gpt2_10b(checkpoint=True):
|
|
|
|
return GPTLMModel(hidden_size=4096, num_layers=50, num_attention_heads=16, checkpoint=checkpoint)
|
|
|
|
|
|
|
|
|
|
|
|
def get_cpu_mem():
|
|
|
|
return psutil.Process().memory_info().rss / 1024**2
|
|
|
|
|
|
|
|
|
|
|
|
def get_gpu_mem():
|
|
|
|
return torch.cuda.memory_allocated() / 1024**2
|
|
|
|
|
|
|
|
|
|
|
|
def get_mem_info(prefix=''):
|
|
|
|
return f'{prefix}GPU memory usage: {get_gpu_mem():.2f} MB, CPU memory usage: {get_cpu_mem():.2f} MB'
|
|
|
|
|
|
|
|
|
|
|
|
def get_tflops(model_numel, batch_size, seq_len, step_time):
|
|
|
|
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
|
|
|
|
|
|
|
|
|
2022-11-08 09:17:19 +00:00
|
|
|
# Tensor Parallel
|
|
|
|
def tensor_parallelize(model: torch.nn.Module, pg: ProcessGroup):
|
|
|
|
"""tensor_parallelize
|
|
|
|
Sharding the Model Parameters.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (torch.nn.Module): a torch module to be sharded
|
|
|
|
"""
|
|
|
|
for mn, module in model.named_modules():
|
|
|
|
for pn, param in module.named_parameters(recurse=False):
|
2022-11-16 03:36:27 +00:00
|
|
|
# NOTE() a param maybe shared by tow modules
|
|
|
|
if hasattr(param, 'visited'):
|
|
|
|
continue
|
|
|
|
param.set_dist_spec(ReplicaSpec())
|
2022-11-08 09:17:19 +00:00
|
|
|
if 'mlp.c_fc' in mn:
|
|
|
|
if 'weight' in pn or 'bias' in pn:
|
|
|
|
split_param_col_tp1d(param, pg) # colmn slice
|
|
|
|
# keep the shape of the output from c_fc
|
|
|
|
param.compute_spec.set_output_replicate(False)
|
2022-11-16 03:36:27 +00:00
|
|
|
else:
|
|
|
|
param.set_dist_spec(ReplicaSpec())
|
2022-11-08 09:17:19 +00:00
|
|
|
elif 'mlp.c_proj' in mn:
|
|
|
|
if 'weight' in pn:
|
|
|
|
split_param_row_tp1d(param, pg) # row slice
|
2022-11-16 03:36:27 +00:00
|
|
|
else:
|
|
|
|
param.set_dist_spec(ReplicaSpec())
|
2022-11-08 09:17:19 +00:00
|
|
|
elif 'wte' in mn or 'wpe' in mn:
|
|
|
|
split_param_col_tp1d(param, pg) # colmn slice
|
|
|
|
elif 'c_attn' in mn or 'c_proj' in mn:
|
|
|
|
split_param_col_tp1d(param, pg) # colmn slice
|
2022-11-16 03:36:27 +00:00
|
|
|
else:
|
|
|
|
param.set_dist_spec(ReplicaSpec())
|
|
|
|
|
|
|
|
param.visited = True
|
2022-11-08 09:17:19 +00:00
|
|
|
|
|
|
|
|
|
|
|
# Gemini + ZeRO DDP
|
|
|
|
def gemini_zero_dpp(model: torch.nn.Module, pg: ProcessGroup, placememt_policy: str = "auto"):
|
|
|
|
cai_version = colossalai.__version__
|
|
|
|
if version.parse(cai_version) > version.parse("0.1.10"):
|
|
|
|
from colossalai.nn.parallel import GeminiDDP
|
|
|
|
model = GeminiDDP(model,
|
|
|
|
device=get_current_device(),
|
|
|
|
placement_policy=placememt_policy,
|
|
|
|
pin_memory=True,
|
|
|
|
search_range_mb=32)
|
|
|
|
elif version.parse(cai_version) <= version.parse("0.1.10") and version.parse(cai_version) >= version.parse("0.1.9"):
|
|
|
|
from colossalai.gemini import ChunkManager, GeminiManager
|
|
|
|
chunk_size = ChunkManager.search_chunk_size(model, 64 * 1024**2, 32)
|
|
|
|
gemini_manager = GeminiManager(placememt_policy, chunk_manager)
|
|
|
|
chunk_manager = ChunkManager(chunk_size,
|
|
|
|
pg,
|
|
|
|
enable_distributed_storage=True,
|
|
|
|
init_device=GeminiManager.get_default_device(placememt_policy))
|
|
|
|
model = ZeroDDP(model, gemini_manager)
|
|
|
|
else:
|
|
|
|
raise NotImplemented(f"CAI version {cai_version} is not supported")
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
2022-11-08 08:14:07 +00:00
|
|
|
def main():
|
2022-11-08 09:17:19 +00:00
|
|
|
args = parse_args()
|
|
|
|
|
2022-11-08 08:14:07 +00:00
|
|
|
BATCH_SIZE = 8
|
|
|
|
SEQ_LEN = 1024
|
|
|
|
VOCAB_SIZE = 50257
|
|
|
|
NUM_STEPS = 10
|
2022-11-08 09:17:19 +00:00
|
|
|
|
2022-11-08 08:14:07 +00:00
|
|
|
disable_existing_loggers()
|
|
|
|
colossalai.launch_from_torch(config={})
|
|
|
|
|
2022-11-08 09:17:19 +00:00
|
|
|
logger = get_dist_logger()
|
2022-11-16 03:36:27 +00:00
|
|
|
logger.info(f"using dist plan {args.distplan}", ranks=[0])
|
2022-11-08 08:14:07 +00:00
|
|
|
|
|
|
|
# build criterion
|
|
|
|
criterion = GPTLMLoss()
|
|
|
|
|
2022-11-16 03:36:27 +00:00
|
|
|
torch.manual_seed(123)
|
|
|
|
if args.distplan == "colossalai":
|
|
|
|
# all param must use the same process group.
|
|
|
|
default_pg = ProcessGroup(tp_degree=args.tp_degree)
|
|
|
|
default_dist_spec = ShardSpec([-1], [args.tp_degree]) if args.shardinit else None
|
|
|
|
|
|
|
|
# build GPT model
|
|
|
|
with ColoInitContext(device='cuda', default_dist_spec=default_dist_spec, default_pg=default_pg):
|
|
|
|
model = gpt2_medium(checkpoint=True)
|
|
|
|
|
|
|
|
pg = default_pg
|
|
|
|
# Tensor Parallelism (TP)
|
|
|
|
tensor_parallelize(model, pg)
|
|
|
|
# Gemini + ZeRO DP, Note it must be used after TP
|
|
|
|
model = gemini_zero_dpp(model, pg, args.placement)
|
|
|
|
|
|
|
|
# build optimizer
|
|
|
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
|
|
|
optimizer = ZeroOptimizer(optimizer, model, initial_scale=2**5)
|
|
|
|
logger.info(get_mem_info(prefix='After init optim, '), ranks=[0])
|
|
|
|
|
|
|
|
elif args.distplan == "ddp":
|
|
|
|
model = gpt2_medium(checkpoint=True).cuda()
|
|
|
|
ddp_model = DDP(model)
|
|
|
|
optimizer = torch.optim.Adam(ddp_model.parameters(), lr=0.01)
|
|
|
|
|
|
|
|
elif args.distplan == "zero":
|
|
|
|
from torch.distributed.optim import ZeroRedundancyOptimizer
|
|
|
|
model = gpt2_medium(checkpoint=True).cuda()
|
|
|
|
ddp_model = DDP(model)
|
|
|
|
optimizer = ZeroRedundancyOptimizer(ddp_model.parameters(), optimizer_class=torch.optim.Adam, lr=0.01)
|
|
|
|
else:
|
|
|
|
raise TypeError(f"{args.distplan} is error")
|
|
|
|
|
|
|
|
numel = sum([p.numel() for p in model.parameters()])
|
|
|
|
logger.info(get_mem_info(prefix='After init model, '), ranks=[0])
|
|
|
|
get_tflops_func = partial(get_tflops, numel, BATCH_SIZE, SEQ_LEN)
|
2022-11-08 08:14:07 +00:00
|
|
|
|
2022-11-08 09:17:19 +00:00
|
|
|
torch.cuda.synchronize()
|
2022-11-08 08:14:07 +00:00
|
|
|
model.train()
|
|
|
|
for n in range(NUM_STEPS):
|
|
|
|
# we just use randomly generated data here
|
|
|
|
input_ids, attn_mask = get_data(BATCH_SIZE, SEQ_LEN, VOCAB_SIZE)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
start = time()
|
|
|
|
outputs = model(input_ids, attn_mask)
|
|
|
|
loss = criterion(outputs, input_ids)
|
|
|
|
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Forward '), ranks=[0])
|
2022-11-16 03:36:27 +00:00
|
|
|
if args.distplan == "colossalai":
|
|
|
|
optimizer.backward(loss)
|
|
|
|
elif args.distplan in ["ddp", "zero"]:
|
|
|
|
loss.backward()
|
|
|
|
|
2022-11-08 08:14:07 +00:00
|
|
|
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Backward '), ranks=[0])
|
|
|
|
optimizer.step()
|
|
|
|
logger.info(get_mem_info(prefix=f'[{n+1}/{NUM_STEPS}] Optimizer step '), ranks=[0])
|
|
|
|
step_time = time() - start
|
|
|
|
logger.info(
|
|
|
|
f'[{n+1}/{NUM_STEPS}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}',
|
|
|
|
ranks=[0])
|
|
|
|
|
2022-11-08 09:17:19 +00:00
|
|
|
torch.cuda.synchronize()
|
|
|
|
|
2022-11-08 08:14:07 +00:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|