ColossalAI/applications/Chat/coati/models/llama/llama_critic.py

42 lines
1.2 KiB
Python
Raw Normal View History

2023-03-28 12:25:36 +00:00
from typing import Optional
import torch.nn as nn
from transformers import LlamaConfig, LlamaModel
2023-03-28 12:25:36 +00:00
from ..base import Critic
class LlamaCritic(Critic):
"""
Llama Critic model.
Args:
pretrained (str): Pretrained model name or path.
config (LlamaConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): LoRA rank.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[LlamaConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none',
**kwargs) -> None:
if pretrained is not None:
model = LlamaModel.from_pretrained(pretrained)
2023-03-28 12:25:36 +00:00
elif config is not None:
model = LlamaModel(config)
2023-03-28 12:25:36 +00:00
else:
model = LlamaModel(LlamaConfig())
2023-03-28 12:25:36 +00:00
if checkpoint:
model.gradient_checkpointing_enable()
value_head = nn.Linear(model.config.hidden_size, 1)
super().__init__(model, value_head, lora_rank, lora_train_bias, **kwargs)