mirror of https://github.com/hpcaitech/ColossalAI
39 lines
1.4 KiB
Python
39 lines
1.4 KiB
Python
![]() |
"""
|
||
|
reward model
|
||
|
"""
|
||
|
from typing import Optional
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from coati.models import BaseModel
|
||
|
from transformers import PretrainedConfig
|
||
|
|
||
|
|
||
|
class RewardModel(BaseModel):
|
||
|
"""
|
||
|
Reward model class.
|
||
|
|
||
|
Args:
|
||
|
pretrained str: huggingface or local model path
|
||
|
config: PretrainedConfig object
|
||
|
**kwargs: all other kwargs as in AutoModel.from_pretrained
|
||
|
"""
|
||
|
|
||
|
def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None:
|
||
|
super().__init__(pretrained=pretrained, config=config, **kwargs)
|
||
|
self.value_head = nn.Linear(self.last_hidden_state_size, 1)
|
||
|
self.value_head.weight.data.normal_(mean=0.0, std=1 / (self.last_hidden_state_size + 1))
|
||
|
|
||
|
def forward(self, input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||
|
outputs = self.model(input_ids, attention_mask=attention_mask)
|
||
|
|
||
|
last_hidden_states = outputs["last_hidden_state"]
|
||
|
sequence_lengths = torch.max(attention_mask * torch.arange(input_ids.size(1), device=input_ids.device), dim=1)[
|
||
|
0
|
||
|
]
|
||
|
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), sequence_lengths].type(
|
||
|
self.value_head.weight.dtype
|
||
|
)
|
||
|
values = self.value_head(sequence_hidden_states).squeeze(-1) # Ensure shape is (B,)
|
||
|
return values
|