ColossalAI/applications/ColossalChat/coati/trainer/utils.py

115 lines
3.1 KiB
Python
Raw Normal View History

[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
"""
Training utilities for Coati.
"""
[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
2024-03-29 06:12:29 +00:00
from typing import Any
import torch
import torch.distributed as dist
from torch.utils._pytree import tree_map
from torch.utils.data import DataLoader
class CycledDataLoader:
"""
A data loader that cycles through the data when it reaches the end.
Args:
dataloader (DataLoader): The original data loader.
Attributes:
dataloader (DataLoader): The original data loader.
count (int): The number of times the data loader has been cycled.
dataloader_iter (iterable): The iterator for the data loader.
Methods:
next(): Returns the next batch of data from the data loader, cycling through the data if necessary.
"""
def __init__(
self,
dataloader: DataLoader,
) -> None:
self.dataloader = dataloader
self.count = 0
self.dataloader_iter = None
def next(self):
"""
Returns the next batch of data from the data loader, cycling through the data if necessary.
Returns:
Any: The next batch of data from the data loader.
"""
# defer initialization
if self.dataloader_iter is None:
self.dataloader_iter = iter(self.dataloader)
self.count += 1
try:
return next(self.dataloader_iter)
except StopIteration:
self.count = 0
self.dataloader_iter = iter(self.dataloader)
return next(self.dataloader_iter)
def is_rank_0() -> bool:
"""
Check if the current process is the rank 0 process in a distributed training setup.
Returns:
bool: True if the current process is the rank 0 process, False otherwise.
"""
return not dist.is_initialized() or dist.get_rank() == 0
def to_device(x: Any, device: torch.device) -> Any:
"""
Move the input tensor or nested structure of tensors to the specified device.
Args:
x (Any): The input tensor or nested structure of tensors.
device (torch.device): The target device to move the tensors to.
Returns:
Any: The tensor or nested structure of tensors moved to the target device.
"""
def _to(t: Any):
if isinstance(t, torch.Tensor):
return t.to(device)
return t
return tree_map(_to, x)
def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor:
"""
Perform all-reduce operation on the given tensor and compute the mean across all processes.
Args:
tensor (torch.Tensor): The input tensor to be reduced.
Returns:
torch.Tensor: The reduced tensor with mean computed across all processes.
"""
dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM)
tensor.div_(dist.get_world_size())
return tensor
def all_reduce_sum(tensor: torch.Tensor) -> torch.Tensor:
"""
Performs an all-reduce operation to sum the values of the given tensor across all processes.
Args:
tensor (torch.Tensor): The input tensor to be reduced.
Returns:
torch.Tensor: The reduced tensor with the sum of values across all processes.
"""
dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM)
return tensor