2024-07-02 09:08:41 +00:00
|
|
|
# modified from test_shard_mistral.py
|
|
|
|
import os
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
|
|
|
|
from colossalai.logging import disable_existing_loggers
|
|
|
|
from colossalai.shardformer.layer.utils import Randomizer
|
|
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
|
|
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
from tests.kit.model_zoo import model_zoo
|
|
|
|
from tests.test_shardformer.test_model._utils import (
|
|
|
|
build_model_from_hybrid_plugin,
|
|
|
|
check_all_grad_tensors,
|
|
|
|
check_loss,
|
|
|
|
check_weight,
|
|
|
|
get_grad_tensors_for_check,
|
|
|
|
run_forward_backward_with_hybrid_plugin,
|
|
|
|
unwrap_model,
|
|
|
|
)
|
|
|
|
|
|
|
|
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
|
|
|
|
|
|
|
|
|
|
|
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
2024-07-05 07:19:37 +00:00
|
|
|
# TODO: SGD failed for full dp
|
2024-07-02 09:08:41 +00:00
|
|
|
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
|
2024-07-05 07:19:37 +00:00
|
|
|
model_fn, loss_fn, test_config, pluggin_cls=MoeHybridParallelPlugin, optim_class=torch.optim.Adam
|
2024-07-02 09:08:41 +00:00
|
|
|
)
|
2024-07-05 07:19:37 +00:00
|
|
|
with torch.autograd.set_detect_anomaly(True):
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
|
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
|
|
)
|
2024-07-02 09:08:41 +00:00
|
|
|
|
|
|
|
stage_manager = booster.plugin.stage_manager
|
|
|
|
tp_group = booster.plugin.tp_group
|
|
|
|
|
2024-07-08 05:13:49 +00:00
|
|
|
# check last hidden state & loss
|
|
|
|
if stage_manager is None or stage_manager.is_last_stage():
|
|
|
|
if test_config["precision"] == "fp32":
|
|
|
|
atol, rtol = 1e-5, 1e-3
|
|
|
|
else:
|
|
|
|
atol, rtol = 5e-3, 5e-3
|
|
|
|
|
|
|
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
|
|
|
|
2024-07-02 09:08:41 +00:00
|
|
|
# unwrap model
|
|
|
|
mixtral_model = unwrap_model(org_model, "MixtralModel", "model")
|
|
|
|
shard_mixtral_model = unwrap_model(sharded_model, "MixtralModel", "model")
|
|
|
|
|
|
|
|
row_layer_for_check = ["layers[0].self_attn.q_proj", "embed_tokens"]
|
|
|
|
col_layer_for_check = ["layers[0].self_attn.o_proj"]
|
|
|
|
|
|
|
|
# Save gradient tensors for comparison between the original model and the sharded model before optimizer step.
|
|
|
|
grads_to_check = {}
|
|
|
|
if (stage_manager is None or stage_manager.is_first_stage()) and booster.plugin.zero_stage == 0:
|
|
|
|
if test_config["precision"] == "fp32":
|
|
|
|
atol, rtol = 5e-5, 1e-4
|
|
|
|
else:
|
|
|
|
atol, rtol = 5e-3, 5e-3
|
|
|
|
row_layer_grads = get_grad_tensors_for_check(
|
|
|
|
mixtral_model,
|
|
|
|
shard_mixtral_model,
|
|
|
|
row_layer_for_check,
|
|
|
|
tp_group,
|
|
|
|
atol=atol,
|
|
|
|
rtol=rtol,
|
|
|
|
dim=0,
|
|
|
|
verbose=False,
|
|
|
|
)
|
|
|
|
col_layer_grads = get_grad_tensors_for_check(
|
|
|
|
mixtral_model,
|
|
|
|
shard_mixtral_model,
|
|
|
|
col_layer_for_check,
|
|
|
|
tp_group,
|
|
|
|
atol=atol,
|
|
|
|
rtol=rtol,
|
|
|
|
dim=1,
|
|
|
|
verbose=False,
|
|
|
|
)
|
|
|
|
grads_to_check.update(col_layer_grads)
|
|
|
|
grads_to_check.update(row_layer_grads)
|
|
|
|
|
2024-07-05 07:19:37 +00:00
|
|
|
# check grads
|
|
|
|
check_all_grad_tensors(grads_to_check)
|
|
|
|
|
2024-07-02 09:08:41 +00:00
|
|
|
# optimizer executes step
|
|
|
|
org_optimizer.step()
|
|
|
|
sharded_optimizer.step()
|
|
|
|
|
|
|
|
# check weights
|
|
|
|
if stage_manager is None or stage_manager.is_first_stage():
|
|
|
|
if test_config["precision"] == "fp32":
|
|
|
|
atol, rtol = 2e-4, 1e-3
|
|
|
|
else:
|
|
|
|
atol, rtol = 5e-3, 5e-3
|
|
|
|
check_weight(
|
|
|
|
mixtral_model,
|
|
|
|
shard_mixtral_model,
|
|
|
|
col_layer_for_check,
|
|
|
|
tp_group,
|
|
|
|
atol=atol,
|
|
|
|
rtol=rtol,
|
|
|
|
dim=1,
|
|
|
|
verbose=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize(
|
|
|
|
"test_config",
|
|
|
|
[
|
|
|
|
{
|
|
|
|
"tp_size": 1,
|
2024-07-09 08:14:00 +00:00
|
|
|
"pp_size": 1,
|
2024-07-08 05:13:49 +00:00
|
|
|
"ep_size": 1,
|
2024-07-11 02:12:44 +00:00
|
|
|
"zero_stage": 1,
|
|
|
|
"overlap_communication": False,
|
2024-07-08 05:13:49 +00:00
|
|
|
"precision": "fp32",
|
2024-07-11 02:12:44 +00:00
|
|
|
}, # [dp(4)] + [moe_dp(4)]
|
|
|
|
{
|
|
|
|
"tp_size": 1,
|
|
|
|
"pp_size": 2,
|
|
|
|
"num_microbatches": 2,
|
|
|
|
"ep_size": 1,
|
|
|
|
"zero_stage": 1,
|
|
|
|
"overlap_communication": False,
|
|
|
|
"precision": "fp32",
|
|
|
|
}, # [dp(2) + pp(2)] + [moe_pp(2)]
|
|
|
|
{
|
|
|
|
"tp_size": 2,
|
|
|
|
"pp_size": 2,
|
|
|
|
"num_microbatches": 2,
|
|
|
|
"ep_size": 1,
|
|
|
|
"zero_stage": 1,
|
|
|
|
"overlap_communication": False,
|
|
|
|
"precision": "fp32",
|
|
|
|
}, # [pp(2) + tp(2)] + [pp(2), replicate(2)] pass
|
2024-07-09 08:14:00 +00:00
|
|
|
# {
|
|
|
|
# "tp_size": 1,
|
|
|
|
# "pp_size": 2,
|
|
|
|
# "num_microbatches": 2,
|
2024-07-11 02:12:44 +00:00
|
|
|
# "ep_size": 2,
|
2024-07-09 08:14:00 +00:00
|
|
|
# "zero_stage": 1,
|
2024-07-11 02:12:44 +00:00
|
|
|
# "overlap_communication": False,
|
2024-07-09 08:14:00 +00:00
|
|
|
# "precision": "fp32",
|
|
|
|
# }, # [dp(2) + pp(2)] + [ep(4))]
|
|
|
|
# {
|
|
|
|
# "tp_size": 1,
|
|
|
|
# "pp_size": 1,
|
|
|
|
# "ep_size": 2,
|
|
|
|
# "zero_stage": 0,
|
2024-07-11 02:12:44 +00:00
|
|
|
# "overlap_communication": False,
|
2024-07-09 08:14:00 +00:00
|
|
|
# "precision": "fp32",
|
|
|
|
# }, # [dp(4)] + [ep(2) + moe_tp(2)]
|
|
|
|
# {
|
2024-07-11 02:12:44 +00:00
|
|
|
# "tp_size": 1,
|
|
|
|
# "pp_size": 1,
|
|
|
|
# "ep_size": 4,
|
|
|
|
# "overlap_communication": False,
|
|
|
|
# "zero_stage": 0,
|
2024-07-09 08:14:00 +00:00
|
|
|
# "precision": "fp32"
|
|
|
|
# }, # full dp for non-moe and full ep for moe
|
2024-07-02 09:08:41 +00:00
|
|
|
],
|
|
|
|
)
|
|
|
|
def run_mixtral_test(test_config):
|
|
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_mixtral")
|
|
|
|
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
|
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
|
|
|
|
|
|
|
clear_layout_converter()
|
|
|
|
Randomizer.reset_index()
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
def check_mixtral(rank, world_size, port):
|
|
|
|
disable_existing_loggers()
|
|
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
|
|
run_mixtral_test()
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.dist
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
@clear_cache_before_run()
|
|
|
|
def test_mixtral():
|
|
|
|
spawn(check_mixtral, 4)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
test_mixtral()
|