[test] pass mixtral shardformer test

colossalchat
botbw 5 months ago committed by Hongxin Liu
parent 46c069b0db
commit 37443cc7e4

@ -38,6 +38,7 @@ from colossalai.tensor.d_tensor.api import is_distributed_tensor
from colossalai.tensor.param_op_hook import ColoParamOpHookManager
from colossalai.zero.low_level import LowLevelZeroOptimizer
from colossalai.zero.low_level.zero_hook import ZeroOpHook, wait_all_gather_handle
from colossalai.logging import get_dist_logger
from .pp_plugin_base import PipelinePluginBase
@ -1016,6 +1017,9 @@ class HybridParallelPlugin(PipelinePluginBase):
overlap_allgather: bool = False,
) -> None:
super().__init__()
self.logger = get_dist_logger(type(self).__name__)
assert (
dist.get_world_size() % (tp_size * pp_size) == 0
), f"World size {dist.get_world_size()} is not divisible by tp_size {tp_size} * pp_size {pp_size}"
@ -1064,6 +1068,8 @@ class HybridParallelPlugin(PipelinePluginBase):
self.pp_axis, self.dp_axis, self.tp_axis, self.sp_axis = 0, 1, 2, 3
self.pg_mesh = ProcessGroupMesh(self.pp_size, self.dp_size, self.tp_size, self.sp_size)
self.logger.info(f"{type(self).__name__}: {self.pp_size=} {self.dp_size=} {self.tp_size=} {self.sp_size=}")
self.stage_manager = None
self.schedule = None
self.custom_policy = custom_policy

@ -24,7 +24,6 @@ from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.tensor.moe_tensor.api import is_moe_tensor
from colossalai.zero.low_level import LowLevelZeroOptimizer
class MoeHybridParallelZeroOptimizer(LowLevelZeroOptimizer):
def __init__(
self,
@ -115,6 +114,8 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
self.ep_group = self.moe_pg_mesh.get_group_along_axis(self.ep_axis)
self.moe_tp_group = self.moe_pg_mesh.get_group_along_axis(self.moe_tp_axis)
self.logger.info(f"{type(self).__name__}: {self.ep_size=} {self.moe_dp_size=} {self.moe_tp_size=}")
# set ep_group after super init
# TODO do it in a better way
self.shard_config.ep_group = self.ep_group
@ -168,7 +169,6 @@ class MoeHybridParallelPlugin(HybridParallelPlugin):
)
else:
assert self.dp_size > 1, "Please use Zero when data parallel size is greater than 1."
assert self.precision != "fp32", "Please set precision to 'fp16' or 'bf16' when using ZeRO."
optimizer = MoeHybridParallelZeroOptimizer(
optimizer,
model,

@ -20,13 +20,15 @@ class MixtralPolicy(Policy):
def preprocess(self):
if self.shard_config.enable_tensor_parallelism:
# Resize embedding
vocab_size = self.model.config.vocab_size
world_size = self.shard_config.tensor_parallel_size
if vocab_size % world_size != 0:
new_vocab_size = vocab_size + world_size - vocab_size % world_size
self.model.resize_token_embeddings(new_vocab_size)
raise NotImplementedError
# # Resize embedding
# vocab_size = self.model.config.vocab_size
# world_size = self.shard_config.tensor_parallel_size
# if vocab_size % world_size != 0:
# new_vocab_size = vocab_size + world_size - vocab_size % world_size
# self.model.resize_token_embeddings(new_vocab_size)
return self.model

@ -37,6 +37,15 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
stage_manager = booster.plugin.stage_manager
tp_group = booster.plugin.tp_group
# check last hidden state & loss
if stage_manager is None or stage_manager.is_last_stage():
if test_config["precision"] == "fp32":
atol, rtol = 1e-5, 1e-3
else:
atol, rtol = 5e-3, 5e-3
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
# unwrap model
mixtral_model = unwrap_model(org_model, "MixtralModel", "model")
shard_mixtral_model = unwrap_model(sharded_model, "MixtralModel", "model")
@ -81,15 +90,6 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
org_optimizer.step()
sharded_optimizer.step()
# check last hidden state & loss
if stage_manager is None or stage_manager.is_last_stage():
if test_config["precision"] == "fp32":
atol, rtol = 1e-5, 1e-3
else:
atol, rtol = 5e-3, 5e-3
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
# check weights
if stage_manager is None or stage_manager.is_first_stage():
if test_config["precision"] == "fp32":
@ -121,16 +121,32 @@ def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn,
"zero_stage": 0,
"precision": "fp32",
}, # pp + ep
# {"tp_size": 1, "pp_size": 1, "ep_size": 1, "zero_stage": 1, "precision": "fp16"}, # full dp for moe and non-moe
# { # moe_dp = 2, non_moe_dp = 4
# "tp_size": 1,
# "pp_size": 1,
# "ep_size": 2,
# "zero_stage": 1,
# "precision": "fp16",
# }, # moe_dp = 1, non_moe_dp = 4
# {"tp_size": 1, "pp_size": 1, "ep_size": 4, "zero_stage": 1, "precision": "fp16"},
# {"tp_size": 1, "pp_size": 1, "ep_size": 1, "zero_stage": 0, "precision": "fp32"}, # full dp for moe and non-moe
{
"tp_size": 1,
"pp_size": 2,
"num_microbatches": 2,
"ep_size": 1,
"zero_stage": 0,
"precision": "fp32",
}, # pp + ep
{
"tp_size": 1,
"pp_size": 2,
"num_microbatches": 2,
"ep_size": 4,
"zero_stage": 0,
"precision": "fp32",
}, # pp + ep
{"tp_size": 1, "pp_size": 1, "ep_size": 1, "zero_stage": 1, "precision": "bf16"}, # full dp for moe and non-moe
{ # moe_dp = 2, non_moe_dp = 4
"tp_size": 1,
"pp_size": 1,
"ep_size": 2,
"zero_stage": 1,
"precision": "fp32",
}, # moe_dp = 1, non_moe_dp = 4
{"tp_size": 1, "pp_size": 1, "ep_size": 4, "zero_stage": 1, "precision": "fp32"}, # full dp for non-moe and full ep for moe
{"tp_size": 1, "pp_size": 1, "ep_size": 1, "zero_stage": 0, "precision": "fp32"}, # full dp for moe and non-moe
],
)
def run_mixtral_test(test_config):

Loading…
Cancel
Save