ColossalAI/colossalai/zero/shard_utils/bucket_tensor_shard_strateg...

50 lines
2.3 KiB
Python
Raw Normal View History

from typing import List, Optional
2022-03-14 06:48:32 +00:00
import torch
import torch.distributed as dist
from colossalai.utils import get_current_device
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
from torch._utils import _flatten_dense_tensors as flatten
2022-03-14 06:48:32 +00:00
from .tensor_shard_strategy import TensorShardStrategy
class BucketTensorShardStrategy(TensorShardStrategy):
"""Use the same shard scheme as `TensorShardStrategy`'s, but it gathers tensors of a sub-module together,
which will fully utilize network bandwidth.
It is especially useful when sub-module contains bias,
since we cannot utilize network bandwidth well if we only gather a bias tensor (bias is usaully small).
"""
2022-03-14 06:48:32 +00:00
def gather(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None):
2022-03-14 06:48:32 +00:00
tensor_list: List[ShardedTensor] = [t for t in tensor_list if t.is_sharded]
if len(tensor_list) == 0:
return
target_device = tensor_list[0].device
dtype = tensor_list[0].dtype
buffer_list: List[torch.Tensor] = []
tensor_numels = [t.payload.numel() for t in tensor_list]
buffer_size = sum(tensor_numels)
world_size = dist.get_world_size(process_group)
rank = dist.get_rank(process_group)
for i in range(world_size):
if i == rank:
2022-03-14 06:48:32 +00:00
buffer_list.append(flatten([t.payload for t in tensor_list]).cuda(get_current_device()))
2022-03-14 07:48:55 +00:00
# Release payload here, to decrease peak memory usage
for t in tensor_list:
t.reset_payload(None)
2022-03-14 06:48:32 +00:00
else:
buffer_list.append(torch.zeros(buffer_size, dtype=dtype, device=get_current_device()))
dist.all_gather(buffer_list, buffer_list[rank], group=process_group)
2022-03-14 06:48:32 +00:00
# Move to target device before splitting buffer
# Ensure we utilize maximum PCIE bandwidth
buffer_list = [buffer.to(target_device) for buffer in buffer_list]
offset = 0
for i, t in enumerate(tensor_list):
gathered_payload = [buffer[offset:offset + tensor_numels[i]] for buffer in buffer_list]
gathered_payload = torch.cat(gathered_payload)[:t.origin_numel].view(t.origin_shape)
t.reset_payload(gathered_payload)
t.is_sharded = False
offset += tensor_numels[i]