add bucket tensor shard strategy

pull/403/head
ver217 3 years ago
parent aaead33cfe
commit 88804aee49

@ -1,7 +1,8 @@
import torch
from colossalai.registry import OPHOOKS
from colossalai.zero.shard_utils import BaseShardStrategy
from colossalai.utils import get_current_device
from colossalai.zero.shard_utils import BaseShardStrategy
from ._base_ophook import BaseOpHook
@ -18,23 +19,32 @@ class ZeroHook(BaseOpHook):
self.computing_device = torch.device(f'cuda:{get_current_device()}')
def pre_fwd_exec(self, module: torch.nn.Module, *args):
tensor_list = []
for param in module.parameters():
assert hasattr(param, 'col_attr')
self.shard_strategy.gather([param.col_attr.data])
tensor_list.append(param.col_attr.data)
self.shard_strategy.gather(tensor_list)
for param in module.parameters():
if param.col_attr.data.device != self.computing_device:
param.col_attr.data.to(self.computing_device)
param.data = param.col_attr.data.payload
def post_fwd_exec(self, module: torch.nn.Module, *args):
tensor_list = []
for param in module.parameters():
assert hasattr(param, 'col_attr')
self.shard_strategy.shard([param.col_attr.data])
param.data = torch.empty([], dtype=param.col_attr.data.dtype, device=param.col_attr.data.payload.device)
tensor_list.append(param.col_attr.data)
self.shard_strategy.shard(tensor_list)
for param in module.parameters():
param.col_attr.remove_torch_payload()
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
tensor_list = []
for param in module.parameters():
assert hasattr(param, 'col_attr')
self.shard_strategy.gather([param.col_attr.data])
tensor_list.append(param.col_attr.data)
self.shard_strategy.gather(tensor_list)
for param in module.parameters():
if param.col_attr.data.device != self.computing_device:
param.col_attr.data.to(self.computing_device)
param.data = param.col_attr.data.payload
@ -52,10 +62,13 @@ class ZeroHook(BaseOpHook):
param.col_attr.bwd_count += 1
def post_bwd_exec(self, module: torch.nn.Module, input):
tensor_list = []
for param in module.parameters():
assert hasattr(param, 'col_attr')
self.shard_strategy.shard([param.col_attr.data])
param.data = torch.empty([], dtype=param.col_attr.data.dtype, device=param.col_attr.data.payload.device)
tensor_list.append(param.col_attr.data)
self.shard_strategy.shard(tensor_list)
for param in module.parameters():
param.col_attr.remove_torch_payload()
def pre_iter(self):
pass

@ -1,4 +1,5 @@
from colossalai.zero.shard_utils.base_shard_strategy import BaseShardStrategy
from colossalai.zero.shard_utils.tensor_shard_strategy import TensorShardStrategy
from .base_shard_strategy import BaseShardStrategy
from .bucket_tensor_shard_strategy import BucketTensorShardStrategy
from .tensor_shard_strategy import TensorShardStrategy
__all__ = ['BaseShardStrategy', 'TensorShardStrategy']
__all__ = ['BaseShardStrategy', 'TensorShardStrategy', 'BucketTensorShardStrategy']

@ -0,0 +1,38 @@
from typing import List
import torch
import torch.distributed as dist
from colossalai.utils import get_current_device
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
from torch._utils import _flatten_dense_tensors as flatten
from .tensor_shard_strategy import TensorShardStrategy
class BucketTensorShardStrategy(TensorShardStrategy):
def gather(self, tensor_list: List[ShardedTensor]):
tensor_list: List[ShardedTensor] = [t for t in tensor_list if t.is_sharded]
if len(tensor_list) == 0:
return
target_device = tensor_list[0].device
dtype = tensor_list[0].dtype
buffer_list: List[torch.Tensor] = []
tensor_numels = [t.payload.numel() for t in tensor_list]
buffer_size = sum(tensor_numels)
for i in range(self.world_size):
if i == self.local_rank:
buffer_list.append(flatten([t.payload for t in tensor_list]).cuda(get_current_device()))
else:
buffer_list.append(torch.zeros(buffer_size, dtype=dtype, device=get_current_device()))
dist.all_gather(buffer_list, buffer_list[self.local_rank], group=self.process_group)
# Move to target device before splitting buffer
# Ensure we utilize maximum PCIE bandwidth
buffer_list = [buffer.to(target_device) for buffer in buffer_list]
offset = 0
for i, t in enumerate(tensor_list):
gathered_payload = [buffer[offset:offset + tensor_numels[i]] for buffer in buffer_list]
gathered_payload = torch.cat(gathered_payload)[:t.origin_numel].view(t.origin_shape)
t.reset_payload(gathered_payload)
t.is_sharded = False
offset += tensor_numels[i]
Loading…
Cancel
Save