You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalChat/tests/test_lora.py

70 lines
2.0 KiB

[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
8 months ago
import torch
import torch.nn as nn
import torch.optim as optim
from coati.models import convert_to_lora_module
from torch.utils.data import DataLoader, TensorDataset
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
def test_overfit():
input_size = 1000
hidden_size = 200
num_classes = 5
batch_size = 64
learning_rate = 0.01
num_epochs = 200
# Synthesized dataset
X = torch.randn(batch_size, input_size)
Y = torch.randint(0, num_classes, (batch_size,))
# Convert to DataLoader
dataset = TensorDataset(X, Y)
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Build and convert model
model = SimpleNN(input_size, hidden_size, num_classes)
weight_to_compare = model.fc1.weight.detach().clone()
model = convert_to_lora_module(model, lora_rank=30)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
for _ in range(num_epochs):
for i, (inputs, labels) in enumerate(loader):
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
print(loss)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Check if model has overfitted
outputs = model(X)
_, predicted = torch.max(outputs.data, 1)
total = labels.size(0)
correct = (predicted == Y).sum().item()
assert (correct / total > 0.95, "The model has not overfitted to the synthesized dataset")
assert (weight_to_compare - model.fc1.weight).sum() < 0.01
if __name__ == "__main__":
test_overfit()