You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalChat/coati/models/critic.py

35 lines
1.2 KiB

[ColossalChat] Update RLHF V2 (#5286) * Add dpo. Fix sft, ppo, lora. Refactor all * fix and tested ppo * 2 nd round refactor * add ci tests * fix ci * fix ci * fix readme, style * fix readme style * fix style, fix benchmark * reproduce benchmark result, remove useless files * rename to ColossalChat * use new image * fix ci workflow * fix ci * use local model/tokenizer for ci tests * fix ci * fix ci * fix ci * fix ci timeout * fix rm progress bar. fix ci timeout * fix ci * fix ci typo * remove 3d plugin from ci temporary * test environment * cannot save optimizer * support chat template * fix readme * fix path * test ci locally * restore build_or_pr * fix ci data path * fix benchmark * fix ci, move ci tests to 3080, disable fast tokenizer * move ci to 85 * support flash attention 2 * add all-in-one data preparation script. Fix colossal-llama2-chat chat template * add hardware requirements * move ci test data * fix save_model, add unwrap * fix missing bos * fix missing bos; support grad accumulation with gemini * fix ci * fix ci * fix ci * fix llama2 chat template config * debug sft * debug sft * fix colossalai version requirement * fix ci * add sanity check to prevent NaN loss * fix requirements * add dummy data generation script * add dummy data generation script * add dummy data generation script * add dummy data generation script * update readme * update readme * update readme and ignore * fix logger bug * support parallel_output * modify data preparation logic * fix tokenization * update lr * fix inference * run pre-commit --------- Co-authored-by: Tong Li <tong.li352711588@gmail.com>
8 months ago
"""
Critic model
"""
from typing import Optional
import torch
import torch.nn as nn
from coati.models import BaseModel
from transformers import PretrainedConfig
class Critic(BaseModel):
"""
Critic model class.
Args:
pretrained (str): path to pretrained model.
config (PretrainedConfig): PretrainedConfig used to initiate the base model.
"""
def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None:
super().__init__(pretrained=pretrained, config=config, **kwargs)
# et last hidden state size with dummy input
self.value_head = nn.Linear(self.last_hidden_state_size, 1)
def forward(self, input_ids: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
outputs = self.model(input_ids, attention_mask=attention_mask)
last_hidden_states = outputs["last_hidden_state"]
sequence_hidden_states = last_hidden_states[torch.arange(last_hidden_states.size(0)), :].type(
self.value_head.weight.dtype
)
values = self.value_head(sequence_hidden_states).squeeze(-1) # ensure shape is (B, sequence length)
return values