mirror of https://github.com/hpcaitech/ColossalAI
84 lines
4.1 KiB
Python
84 lines
4.1 KiB
Python
![]() |
import operator
|
||
|
from functools import reduce
|
||
|
import warnings
|
||
|
import torch
|
||
|
from colossalai.auto_parallel.solver.constants import INFINITY_COST
|
||
|
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
|
||
|
from .operator_handler import OperatorHandler
|
||
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||
|
from copy import deepcopy
|
||
|
from typing import Dict, List
|
||
|
import math
|
||
|
from colossalai.auto_parallel.solver._utils import exception_handler
|
||
|
|
||
|
__all__ = ['UnaryElementwiseHandler']
|
||
|
|
||
|
|
||
|
class UnaryElementwiseHandler(OperatorHandler):
|
||
|
"""
|
||
|
An OperatorHandler which deals with the sharding strategies of UnaryElementwiseOp.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
if self.node.op == 'call_module':
|
||
|
target = self.node.target
|
||
|
submod = self.node.graph.owning_module.get_submodule(target)
|
||
|
submod_type = type(submod)
|
||
|
if submod_type == torch.nn.Dropout:
|
||
|
print(f'predecessor nodes of dropout node are {self.predecessor_node}')
|
||
|
input_nodes_len = 0
|
||
|
for check_node in self.predecessor_node:
|
||
|
if isinstance(check_node._meta_data, torch.Tensor):
|
||
|
input_nodes_len += 1
|
||
|
assert input_nodes_len == 1, f'Temporally, we just support single input element-wise op, node name is {self.node}, node args is {self.node.args}.'
|
||
|
self.input_data = self.predecessor_node[0]._meta_data
|
||
|
self.input_node = self.predecessor_node[0]
|
||
|
self.output_data = self.node._meta_data
|
||
|
|
||
|
def _generate_compute_cost(self, *args, **kwargs):
|
||
|
return super()._generate_compute_cost(*args, **kwargs)
|
||
|
|
||
|
@exception_handler
|
||
|
def register_strategy(self):
|
||
|
# TODO: integrate element-wise func and module together
|
||
|
# create sharding strategy for element-wise function
|
||
|
|
||
|
# For element-wise function, we keep the sharding spec of output node same as
|
||
|
# the input. Therefore, the different strategies of input node with same
|
||
|
# output sharding spec will generate same strategy for element-wise function.
|
||
|
sharding_spec_checklist = []
|
||
|
for strategy in self.input_node.strategies_vector:
|
||
|
# It looks a little bit confusing, the input of the processing node
|
||
|
# is the output of the input_node.
|
||
|
input_sharding_spec = strategy.output_sharding_spec
|
||
|
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
|
||
|
if input_sharding_spec in sharding_spec_checklist:
|
||
|
continue
|
||
|
sharding_spec_checklist.append(input_sharding_spec)
|
||
|
dim_partition_dict = deepcopy(input_sharding_spec.dim_partition_dict)
|
||
|
try:
|
||
|
output_sharding_spec = self._generate_sharding_spec(self.output_data, dim_partition_dict)
|
||
|
except AssertionError as e:
|
||
|
warnings.warn(f'{e}')
|
||
|
continue
|
||
|
name = f'{input_sharding_spec.sharding_sequence} -> {output_sharding_spec.sharding_sequence}'
|
||
|
# TODO: use meta_info_prop to profile memory cost and compute cost
|
||
|
compute_cost = self.output_data.numel()
|
||
|
memory_cost = 0
|
||
|
|
||
|
resharding_costs = self._generate_resharding_costs([input_sharding_spec])
|
||
|
|
||
|
# to prevent the resharding happening, set their resharding cost to inf.
|
||
|
resharding_costs[self.input_node] = [
|
||
|
0 if cost == 0 else INFINITY_COST for cost in resharding_costs[self.input_node]
|
||
|
]
|
||
|
sharding_strategy = ShardingStrategy(name,
|
||
|
output_sharding_spec,
|
||
|
compute_cost=compute_cost,
|
||
|
memory_cost=memory_cost,
|
||
|
resharding_costs=resharding_costs,
|
||
|
input_shardings=[input_sharding_spec])
|
||
|
self.strategies_vector.append(sharding_strategy)
|