ColossalAI/colossalai/auto_parallel/solver/op_handler/unary_elementwise_handler.py

84 lines
4.1 KiB
Python
Raw Normal View History

import operator
from functools import reduce
import warnings
import torch
from colossalai.auto_parallel.solver.constants import INFINITY_COST
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from .operator_handler import OperatorHandler
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
from copy import deepcopy
from typing import Dict, List
import math
from colossalai.auto_parallel.solver._utils import exception_handler
__all__ = ['UnaryElementwiseHandler']
class UnaryElementwiseHandler(OperatorHandler):
"""
An OperatorHandler which deals with the sharding strategies of UnaryElementwiseOp.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.node.op == 'call_module':
target = self.node.target
submod = self.node.graph.owning_module.get_submodule(target)
submod_type = type(submod)
if submod_type == torch.nn.Dropout:
print(f'predecessor nodes of dropout node are {self.predecessor_node}')
input_nodes_len = 0
for check_node in self.predecessor_node:
if isinstance(check_node._meta_data, torch.Tensor):
input_nodes_len += 1
assert input_nodes_len == 1, f'Temporally, we just support single input element-wise op, node name is {self.node}, node args is {self.node.args}.'
self.input_data = self.predecessor_node[0]._meta_data
self.input_node = self.predecessor_node[0]
self.output_data = self.node._meta_data
def _generate_compute_cost(self, *args, **kwargs):
return super()._generate_compute_cost(*args, **kwargs)
@exception_handler
def register_strategy(self):
# TODO: integrate element-wise func and module together
# create sharding strategy for element-wise function
# For element-wise function, we keep the sharding spec of output node same as
# the input. Therefore, the different strategies of input node with same
# output sharding spec will generate same strategy for element-wise function.
sharding_spec_checklist = []
for strategy in self.input_node.strategies_vector:
# It looks a little bit confusing, the input of the processing node
# is the output of the input_node.
input_sharding_spec = strategy.output_sharding_spec
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
if input_sharding_spec in sharding_spec_checklist:
continue
sharding_spec_checklist.append(input_sharding_spec)
dim_partition_dict = deepcopy(input_sharding_spec.dim_partition_dict)
try:
output_sharding_spec = self._generate_sharding_spec(self.output_data, dim_partition_dict)
except AssertionError as e:
warnings.warn(f'{e}')
continue
name = f'{input_sharding_spec.sharding_sequence} -> {output_sharding_spec.sharding_sequence}'
# TODO: use meta_info_prop to profile memory cost and compute cost
compute_cost = self.output_data.numel()
memory_cost = 0
resharding_costs = self._generate_resharding_costs([input_sharding_spec])
# to prevent the resharding happening, set their resharding cost to inf.
resharding_costs[self.input_node] = [
0 if cost == 0 else INFINITY_COST for cost in resharding_costs[self.input_node]
]
sharding_strategy = ShardingStrategy(name,
output_sharding_spec,
compute_cost=compute_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=[input_sharding_spec])
self.strategies_vector.append(sharding_strategy)