[autoparallel] add elementwise handler (#1622)

* [autoparallel] add elementwise handler

* polish code

* polish code

* reduce skipped strategies range

* polish code
pull/1638/head
YuliangLiu0306 2022-09-23 13:27:31 +08:00 committed by GitHub
parent 3a46215135
commit c7ac0f4ab2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 111 additions and 90 deletions

View File

@ -4,5 +4,9 @@ from .conv_handler import ConvHandler
from .batch_norm_handler import BatchNormHandler
from .reshape_handler import ReshapeHandler
from .bcast_op_handler import BcastOpHandler
from .unary_elementwise_handler import UnaryElementwiseHandler
__all__ = ['OperatorHandler', 'DotHandler', 'ConvHandler', 'BatchNormHandler', 'ReshapeHandler', 'BcastOpHandler']
__all__ = [
'OperatorHandler', 'DotHandler', 'ConvHandler', 'BatchNormHandler', 'ReshapeHandler', 'BcastOpHandler',
'UnaryElementwiseHandler'
]

View File

@ -47,7 +47,10 @@ class OperatorHandler(ABC):
elif self.node.op == 'call_function' and self.node.target not in NON_PARAM_FUNC_OP:
module = None
parameters = list(self.node.args)[1]
named_parameters = {'weight': parameters._meta_data}
if isinstance(parameters, Node):
named_parameters = {'weight': parameters._meta_data}
else:
named_parameters = {}
else:
module = None
named_parameters = None

View File

@ -0,0 +1,83 @@
import operator
from functools import reduce
import warnings
import torch
from colossalai.auto_parallel.solver.constants import INFINITY_COST
from colossalai.auto_parallel.solver.sharding_strategy import ShardingStrategy, StrategiesVector
from .operator_handler import OperatorHandler
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.tensor.sharding_spec import ShardingSpec
from copy import deepcopy
from typing import Dict, List
import math
from colossalai.auto_parallel.solver._utils import exception_handler
__all__ = ['UnaryElementwiseHandler']
class UnaryElementwiseHandler(OperatorHandler):
"""
An OperatorHandler which deals with the sharding strategies of UnaryElementwiseOp.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.node.op == 'call_module':
target = self.node.target
submod = self.node.graph.owning_module.get_submodule(target)
submod_type = type(submod)
if submod_type == torch.nn.Dropout:
print(f'predecessor nodes of dropout node are {self.predecessor_node}')
input_nodes_len = 0
for check_node in self.predecessor_node:
if isinstance(check_node._meta_data, torch.Tensor):
input_nodes_len += 1
assert input_nodes_len == 1, f'Temporally, we just support single input element-wise op, node name is {self.node}, node args is {self.node.args}.'
self.input_data = self.predecessor_node[0]._meta_data
self.input_node = self.predecessor_node[0]
self.output_data = self.node._meta_data
def _generate_compute_cost(self, *args, **kwargs):
return super()._generate_compute_cost(*args, **kwargs)
@exception_handler
def register_strategy(self):
# TODO: integrate element-wise func and module together
# create sharding strategy for element-wise function
# For element-wise function, we keep the sharding spec of output node same as
# the input. Therefore, the different strategies of input node with same
# output sharding spec will generate same strategy for element-wise function.
sharding_spec_checklist = []
for strategy in self.input_node.strategies_vector:
# It looks a little bit confusing, the input of the processing node
# is the output of the input_node.
input_sharding_spec = strategy.output_sharding_spec
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
if input_sharding_spec in sharding_spec_checklist:
continue
sharding_spec_checklist.append(input_sharding_spec)
dim_partition_dict = deepcopy(input_sharding_spec.dim_partition_dict)
try:
output_sharding_spec = self._generate_sharding_spec(self.output_data, dim_partition_dict)
except AssertionError as e:
warnings.warn(f'{e}')
continue
name = f'{input_sharding_spec.sharding_sequence} -> {output_sharding_spec.sharding_sequence}'
# TODO: use meta_info_prop to profile memory cost and compute cost
compute_cost = self.output_data.numel()
memory_cost = 0
resharding_costs = self._generate_resharding_costs([input_sharding_spec])
# to prevent the resharding happening, set their resharding cost to inf.
resharding_costs[self.input_node] = [
0 if cost == 0 else INFINITY_COST for cost in resharding_costs[self.input_node]
]
sharding_strategy = ShardingStrategy(name,
output_sharding_spec,
compute_cost=compute_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=[input_sharding_spec])
self.strategies_vector.append(sharding_strategy)

View File

@ -14,6 +14,7 @@ import torch
import operator
from typing import Dict, List
from ._utils import generate_sharding_spec, generate_resharding_costs
import builtins
class StrategiesConstructor:
@ -63,7 +64,11 @@ class StrategiesConstructor:
def build_strategies_and_cost(self):
for node in self.nodes:
strategies_vector = StrategiesVector(node)
input_nodes_len = len(strategies_vector.predecessor_nodes)
input_nodes_len = 0
for check_node in strategies_vector.predecessor_nodes:
if isinstance(check_node._meta_data, torch.Tensor):
input_nodes_len += 1
# input_nodes_len = len(strategies_vector.predecessor_nodes)
# placeholder node
if node.op == 'placeholder':
# For placeholder nodes, if solver_options.fast is True, we just let them in
@ -122,53 +127,12 @@ class StrategiesConstructor:
# element-wise module
elif submod_type in ELEMENTWISE_MODULE_OP:
# create sharding strategy for element-wise module
assert len(strategies_vector.predecessor_nodes
) == 1, f'Temporally, we just support single input element-wise op.'
input_node = strategies_vector.predecessor_nodes[0]
# For element-wise module, we keep the sharding spec of output node same as
# the input. Therefore, the different strategies of input node with same
# output sharding spec will generate same strategy for element-wise module.
sharding_spec_checklist = []
for strategy in input_node.strategies_vector:
# It looks a little bit confusing, the input of the processing node
# is the output of the input_node.
input_sharding_spec = strategy.output_sharding_spec
assert isinstance(input_sharding_spec,
ShardingSpec), f'The input node should NOT be a tuple of tensor.'
if input_sharding_spec in sharding_spec_checklist:
continue
sharding_spec_checklist.append(input_sharding_spec)
dim_partition_dict = deepcopy(input_sharding_spec.dim_partition_dict)
output_sharding_spec = generate_sharding_spec(node, self.device_mesh, dim_partition_dict)
name = f'{input_sharding_spec.sharding_sequence} -> {output_sharding_spec.sharding_sequence}'
# TODO: use meta_info_prop to profile memory cost and compute cost
compute_cost = node._meta_data.numel()
memory_cost = 0
resharding_costs = generate_resharding_costs(strategies_vector.predecessor_nodes,
[input_sharding_spec])
# to prevent the resharding happening, set their resharding cost to inf.
resharding_costs[input_node] = [
cost if cost == 0 else math.inf for cost in resharding_costs[input_node]
]
sharding_strategy = ShardingStrategy(name,
output_sharding_spec,
compute_cost=compute_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=[input_sharding_spec])
strategies_vector.append(sharding_strategy)
unary_elementwise_handler = UnaryElementwiseHandler(node, self.device_mesh, strategies_vector)
unary_elementwise_handler.register_strategy()
# BatchNormNd module
elif submod_type in BATCHNORM_MODULE_OP:
# bn1 call_module bn1 (conv1,)
# print(node, node.op, node.target, node.args)
# create sharding strategy for element-wise module
# input_node = strategies_vector.predecessor_nodes[0]
norm_handler = BatchNormHandler(node, self.device_mesh, strategies_vector)
norm_handler.register_strategy()
# for strategy in norm_handler.strategies_vector:
@ -181,8 +145,7 @@ class StrategiesConstructor:
# e.g.: for a 2D pooling input NCHW, we should promise no sharding happens on H and W dimension
# create sharding strategy for element-wise module
assert len(strategies_vector.predecessor_nodes
) == 1, f'Temporally, we just support single input element-wise op.'
assert input_nodes_len == 1, f'Temporally, we just support single input element-wise op.'
input_node = strategies_vector.predecessor_nodes[0]
# For element-wise module, we keep the sharding spec of output node same as
# the input. Therefore, the different strategies of input node with same
@ -255,50 +218,15 @@ class StrategiesConstructor:
# element-wise function
elif target in ELEMENTWISE_FUNC_OP or (target in BCAST_FUNC_OP and input_nodes_len == 1):
# TODO: integrate element-wise func and module together
# create sharding strategy for element-wise function
assert len(strategies_vector.predecessor_nodes
) == 1, f'Temporally, we just support single input element-wise op, node name is {node}.'
input_node = strategies_vector.predecessor_nodes[0]
# For element-wise function, we keep the sharding spec of output node same as
# the input. Therefore, the different strategies of input node with same
# output sharding spec will generate same strategy for element-wise function.
sharding_spec_checklist = []
for strategy in input_node.strategies_vector:
# It looks a little bit confusing, the input of the processing node
# is the output of the input_node.
input_sharding_spec = strategy.output_sharding_spec
assert isinstance(input_sharding_spec,
ShardingSpec), f'The input node should NOT be a tuple of tensor.'
if input_sharding_spec in sharding_spec_checklist:
continue
sharding_spec_checklist.append(input_sharding_spec)
dim_partition_dict = deepcopy(input_sharding_spec.dim_partition_dict)
output_sharding_spec = generate_sharding_spec(node, self.device_mesh, dim_partition_dict)
name = f'{input_sharding_spec.sharding_sequence} -> {output_sharding_spec.sharding_sequence}'
# TODO: use meta_info_prop to profile memory cost and compute cost
compute_cost = node._meta_data.numel()
memory_cost = 0
resharding_costs = generate_resharding_costs(strategies_vector.predecessor_nodes,
[input_sharding_spec])
# to prevent the resharding happening, set their resharding cost to inf.
resharding_costs[input_node] = [
0 if cost == 0 else math.inf for cost in resharding_costs[input_node]
]
sharding_strategy = ShardingStrategy(name,
output_sharding_spec,
compute_cost=compute_cost,
memory_cost=memory_cost,
resharding_costs=resharding_costs,
input_shardings=[input_sharding_spec])
strategies_vector.append(sharding_strategy)
if isinstance(node._meta_data, torch.Tensor):
unary_elementwise_handler = UnaryElementwiseHandler(node, self.device_mesh, strategies_vector)
unary_elementwise_handler.register_strategy()
# bcast op
elif target in BCAST_FUNC_OP:
bcast_op_handler = BcastOpHandler(node, self.device_mesh, strategies_vector)
bcast_op_handler.register_strategy()
if isinstance(node._meta_data, torch.Tensor):
bcast_op_handler = BcastOpHandler(node, self.device_mesh, strategies_vector)
bcast_op_handler.register_strategy()
# torch.var_mean
elif target == torch.var_mean:
@ -421,7 +349,10 @@ class StrategiesConstructor:
elif method in RESHAPE_METHOD_OP:
reshape_handler = ReshapeHandler(node, self.device_mesh, strategies_vector)
reshape_handler.register_strategy()
# print(strategies_vector)
# if len(strategies_vector) == 0:
# print(node)
# assert False
else:
raise RuntimeError(f'{method} function is NOT supported now.')