2023-03-10 01:53:52 +00:00
|
|
|
import math
|
|
|
|
from copy import deepcopy
|
|
|
|
from dataclasses import dataclass
|
|
|
|
from typing import Dict, List, Tuple
|
|
|
|
|
2023-06-09 01:41:27 +00:00
|
|
|
import numpy as np
|
2023-03-10 01:53:52 +00:00
|
|
|
import torch
|
|
|
|
|
2023-06-09 01:41:27 +00:00
|
|
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, TrainCycleItem
|
2023-03-10 01:53:52 +00:00
|
|
|
from colossalai.context.singleton_meta import SingletonMeta
|
|
|
|
from colossalai.tensor.d_tensor.comm_spec import *
|
|
|
|
from colossalai.tensor.d_tensor.layout import Layout
|
2023-03-21 05:24:18 +00:00
|
|
|
from colossalai.tensor.d_tensor.misc import LayoutException
|
2023-03-10 01:53:52 +00:00
|
|
|
from colossalai.tensor.utils import all_gather_simulator, all_to_all_simulator, shard_simulator
|
|
|
|
|
|
|
|
from .sharding_spec import ShardingSpec
|
|
|
|
from .utils import get_comm_cost
|
|
|
|
|
|
|
|
__all__ = ['LayoutConverter', 'LayoutConverterOptions', 'set_layout_converting_options']
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class LayoutConverterOptions:
|
|
|
|
"""
|
2023-03-14 08:25:47 +00:00
|
|
|
LayoutConverterOptions is a dataclass which specifies the preferences for layout converting.
|
2023-03-10 01:53:52 +00:00
|
|
|
"""
|
|
|
|
# TODO: layout converter option is not implemented yet
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2023-06-09 01:41:27 +00:00
|
|
|
def to_global(distributed_tensor: torch.Tensor, layout: Layout) -> torch.Tensor:
|
2023-03-14 08:25:47 +00:00
|
|
|
layout_converter = LayoutConverter()
|
2023-03-10 01:53:52 +00:00
|
|
|
global_sharding_spec = ShardingSpec(distributed_tensor.dim(), {})
|
|
|
|
global_layout = Layout(device_mesh=layout.device_mesh,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=layout.device_type,
|
2023-03-10 01:53:52 +00:00
|
|
|
sharding_spec=global_sharding_spec,
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape=layout.entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
with torch.no_grad():
|
2023-03-14 08:25:47 +00:00
|
|
|
global_tensor = layout_converter.apply(distributed_tensor, layout, global_layout)
|
2023-03-10 01:53:52 +00:00
|
|
|
return global_tensor
|
|
|
|
|
|
|
|
|
|
|
|
def set_layout_converting_options(options: LayoutConverterOptions):
|
|
|
|
"""
|
|
|
|
Configure the shape consistency manager via function call.
|
|
|
|
"""
|
|
|
|
manager = LayoutConverter()
|
|
|
|
manager.options = options
|
|
|
|
|
|
|
|
|
|
|
|
class LayoutConverter(metaclass=SingletonMeta):
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
self._options = None
|
|
|
|
self._forward_only = False
|
|
|
|
self.cached_solution = {}
|
|
|
|
|
|
|
|
@property
|
|
|
|
def options(self):
|
|
|
|
return self._options
|
|
|
|
|
|
|
|
@options.setter
|
|
|
|
def options(self, options_: LayoutConverterOptions):
|
|
|
|
assert isinstance(options_, LayoutConverterOptions)
|
|
|
|
self._options = options_
|
|
|
|
|
|
|
|
@property
|
|
|
|
def forward_only(self):
|
|
|
|
return self._forward_only
|
|
|
|
|
|
|
|
@forward_only.setter
|
|
|
|
def forward_only(self, value):
|
|
|
|
assert isinstance(value, bool)
|
|
|
|
self._forward_only = value
|
|
|
|
|
|
|
|
def all_gather_transform_layouts(self, source_layout: Layout) -> Dict[Layout, CommSpec]:
|
|
|
|
'''
|
|
|
|
Get all valid layouts from source_layout with single all-gather operation.
|
|
|
|
For the all-gather operation, we just care about the S dimension.
|
|
|
|
|
|
|
|
Argument:
|
|
|
|
source_layout: the layout to be transformed.
|
|
|
|
|
|
|
|
Return:
|
|
|
|
valid_spec_dict(Dict[Layout, CommSpec]): all valid layouts from source_layout with single all-gather operation.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
layout_converter = LayoutConverter()
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
# [[0, 1,
|
|
|
|
# [2, 3]]
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape = (4, 4, 4)
|
2023-03-10 01:53:52 +00:00
|
|
|
dim_partition_dict = {0: [0], 1: [1]}
|
|
|
|
|
|
|
|
# [S0,S1,R]
|
|
|
|
sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict)
|
|
|
|
layout = Layout(device_mesh=device_mesh,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=torch.device('cuda'),
|
2023-03-10 01:53:52 +00:00
|
|
|
sharding_spec=sharding_spec,
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape=entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
rst_dict = layout_converter.all_gather_transform_layouts(layout)
|
|
|
|
for layout, comm_spec in rst_dict.items():
|
|
|
|
print(f'{layout.sharding_spec.sharding_sequence}: {comm_spec}')
|
|
|
|
|
|
|
|
Output:
|
|
|
|
[R, S1, R]: CommSpec:(comm_pattern:GATHER_FWD_SPLIT_BWD, gather_dim:0, shard_dim:0, logical_process_axis:0)
|
|
|
|
[S0, R, R]: CommSpec:(comm_pattern:GATHER_FWD_SPLIT_BWD, gather_dim:1, shard_dim:1, logical_process_axis:1)
|
|
|
|
'''
|
|
|
|
valid_spec_dict = {}
|
|
|
|
comm_pattern = CollectiveCommPattern.GATHER_FWD_SPLIT_BWD
|
|
|
|
source_spec = source_layout.sharding_spec
|
2023-06-09 01:41:27 +00:00
|
|
|
process_groups_dict = source_layout.device_mesh.process_groups_dict
|
2023-03-10 01:53:52 +00:00
|
|
|
for target_pair in source_spec.dim_partition_dict.items():
|
|
|
|
shard_list = all_gather_simulator(target_pair)
|
|
|
|
index = target_pair[0]
|
|
|
|
new_dim_partition_dict = deepcopy(source_spec.dim_partition_dict)
|
|
|
|
|
|
|
|
# We won't add empty list into dim_partition_dict
|
|
|
|
# The key will be popped if the related shard_list is empty
|
|
|
|
if shard_list:
|
|
|
|
new_dim_partition_dict[index] = shard_list
|
|
|
|
else:
|
|
|
|
new_dim_partition_dict.pop(index)
|
|
|
|
|
|
|
|
# generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec
|
|
|
|
gather_dim = index
|
|
|
|
logical_process_axis = target_pair[1][-1]
|
|
|
|
comm_spec = CommSpec(
|
|
|
|
comm_pattern,
|
2023-06-09 01:41:27 +00:00
|
|
|
process_groups_dict=process_groups_dict,
|
2023-03-10 01:53:52 +00:00
|
|
|
gather_dim=gather_dim,
|
|
|
|
# shard_dim will be used during backward
|
|
|
|
shard_dim=gather_dim,
|
|
|
|
logical_process_axis=logical_process_axis)
|
|
|
|
|
|
|
|
# generate new sharding spec
|
|
|
|
try:
|
|
|
|
new_sharding_spec = ShardingSpec(source_spec.dims, dim_partition_dict=new_dim_partition_dict)
|
|
|
|
new_layout = Layout(device_mesh=source_layout.device_mesh,
|
|
|
|
sharding_spec=new_sharding_spec,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=source_layout.device_type,
|
|
|
|
entire_shape=source_layout.entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
valid_spec_dict[new_layout] = comm_spec
|
2023-03-21 05:24:18 +00:00
|
|
|
except LayoutException:
|
2023-03-10 01:53:52 +00:00
|
|
|
pass
|
|
|
|
return valid_spec_dict
|
|
|
|
|
|
|
|
def all_to_all_transform_layout(self, source_layout: Layout) -> Dict[Layout, CommSpec]:
|
|
|
|
'''
|
|
|
|
Get all valid layouts from source_layout with single all-to-all operation.
|
|
|
|
For the all-to-all operation, we just care about the pairs containing S dimension.
|
|
|
|
|
|
|
|
Argument:
|
|
|
|
source_layout(Layout): the layout to be transformed.
|
|
|
|
|
|
|
|
Return:
|
|
|
|
valid_spec_dict(Dict[Layout, CommSpec]): all valid layouts from source_layout with single all-to-all operation.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
layout_converter = LayoutConverter()
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
# [[0, 1,
|
|
|
|
# [2, 3]]
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape = (4, 4, 4)
|
2023-03-10 01:53:52 +00:00
|
|
|
dim_partition_dict = {0: [0], 1: [1]}
|
|
|
|
|
|
|
|
# [S0,S1,R]
|
|
|
|
sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict)
|
|
|
|
layout = Layout(device_mesh=device_mesh,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=torch.device('cuda'),
|
2023-03-10 01:53:52 +00:00
|
|
|
sharding_spec=sharding_spec,
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape=entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
rst_dict = layout_converter.all_to_all_transform_layout(layout)
|
|
|
|
|
|
|
|
for layout, comm_spec in rst_dict.items():
|
|
|
|
print(f'{layout.sharding_spec.sharding_sequence}: {comm_spec}')
|
|
|
|
|
|
|
|
Output:
|
|
|
|
[S01, R, R]: CommSpec:(comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, gather_dim:1, shard_dim:0, logical_process_axis: 1)
|
|
|
|
[R, S1, S0]: CommSpec:(comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, gather_dim:0, shard_dim:2, logical_process_axis: 0)
|
|
|
|
[S0, R, S1]: CommSpec:(comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, gather_dim:1, shard_dim:2, logical_process_axis: 1)
|
|
|
|
'''
|
|
|
|
valid_spec_dict = {}
|
|
|
|
comm_pattern = CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD
|
2023-06-09 01:41:27 +00:00
|
|
|
process_groups_dict = source_layout.device_mesh.process_groups_dict
|
2023-03-10 01:53:52 +00:00
|
|
|
source_spec = source_layout.sharding_spec
|
|
|
|
tensor_dims = source_spec.dims
|
|
|
|
for f_index in range(tensor_dims - 1):
|
|
|
|
for b_index in range(f_index + 1, tensor_dims):
|
|
|
|
# skip (R, R) cases
|
|
|
|
if f_index not in source_spec.dim_partition_dict and b_index not in source_spec.dim_partition_dict:
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
if f_index in source_spec.dim_partition_dict:
|
|
|
|
# skip (S01, R) -> (R, S01) is NOT allowed
|
|
|
|
if len(source_spec.dim_partition_dict[f_index]) >= 2:
|
|
|
|
continue
|
|
|
|
f_target_pair = (f_index, deepcopy(source_spec.dim_partition_dict[f_index]))
|
|
|
|
else:
|
|
|
|
f_target_pair = (f_index, [])
|
|
|
|
if b_index in source_spec.dim_partition_dict:
|
|
|
|
# skip (R, S01) -> (S01, R) is NOT allowed
|
|
|
|
if len(source_spec.dim_partition_dict[b_index]) >= 2:
|
|
|
|
continue
|
|
|
|
b_target_pair = (b_index, deepcopy(source_spec.dim_partition_dict[b_index]))
|
|
|
|
else:
|
|
|
|
b_target_pair = (b_index, [])
|
|
|
|
|
|
|
|
# skip (S1, S0) -> S10
|
|
|
|
if f_target_pair[1] and b_target_pair[1] and f_target_pair[1][0] >= b_target_pair[1][0]:
|
|
|
|
continue
|
|
|
|
f_shard_list, b_shard_list = all_to_all_simulator(f_target_pair, b_target_pair)
|
|
|
|
f_index = f_target_pair[0]
|
|
|
|
b_index = b_target_pair[0]
|
|
|
|
|
|
|
|
# generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec
|
|
|
|
if len(f_shard_list) < len(f_target_pair[1]):
|
|
|
|
gather_dim = f_index
|
|
|
|
shard_dim = b_index
|
|
|
|
logical_process_axis = f_target_pair[1][-1]
|
|
|
|
else:
|
|
|
|
gather_dim = b_index
|
|
|
|
shard_dim = f_index
|
|
|
|
logical_process_axis = b_target_pair[1][-1]
|
|
|
|
comm_spec = CommSpec(comm_pattern,
|
2023-06-09 01:41:27 +00:00
|
|
|
process_groups_dict,
|
2023-03-10 01:53:52 +00:00
|
|
|
gather_dim=gather_dim,
|
|
|
|
shard_dim=shard_dim,
|
|
|
|
logical_process_axis=logical_process_axis)
|
|
|
|
|
|
|
|
new_dim_partition_dict = deepcopy(source_spec.dim_partition_dict)
|
|
|
|
|
|
|
|
# We won't add empty list into dim_partition_dict
|
|
|
|
# The key will be popped if the related shard_list is empty
|
|
|
|
if f_shard_list:
|
|
|
|
new_dim_partition_dict[f_index] = f_shard_list
|
|
|
|
else:
|
|
|
|
new_dim_partition_dict.pop(f_index)
|
|
|
|
if b_shard_list:
|
|
|
|
new_dim_partition_dict[b_index] = b_shard_list
|
|
|
|
else:
|
|
|
|
new_dim_partition_dict.pop(b_index)
|
|
|
|
|
|
|
|
# generate new sharding spec
|
|
|
|
try:
|
|
|
|
new_sharding_spec = ShardingSpec(source_spec.dims, dim_partition_dict=new_dim_partition_dict)
|
|
|
|
new_layout = Layout(device_mesh=source_layout.device_mesh,
|
|
|
|
sharding_spec=new_sharding_spec,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=source_layout.device_type,
|
|
|
|
entire_shape=source_layout.entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
valid_spec_dict[new_layout] = comm_spec
|
2023-03-21 05:24:18 +00:00
|
|
|
except LayoutException:
|
2023-03-10 01:53:52 +00:00
|
|
|
pass
|
|
|
|
|
|
|
|
return valid_spec_dict
|
|
|
|
|
|
|
|
def shard_transform_layout(self, source_layout: Layout) -> Dict[Layout, CommSpec]:
|
|
|
|
'''
|
|
|
|
Get all valid layouts from source_layout with single shard operation.
|
|
|
|
For the sharding operation, we just care about legal sharding dimensions.
|
|
|
|
|
|
|
|
Argument:
|
|
|
|
source_layout(Layout): the layout to be transformed.
|
|
|
|
|
|
|
|
Return:
|
|
|
|
valid_spec_dict(Dict[Layout, CommSpec]): all valid layouts from source_layout with single shard operation.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
layout_converter = LayoutConverter()
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
# [[0, 1,
|
|
|
|
# [2, 3]]
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape = (4, 4, 4)
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
dim_partition_dict = {0: [0]}
|
|
|
|
|
|
|
|
# [S0,R,R]
|
|
|
|
sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict)
|
|
|
|
layout = Layout(device_mesh=device_mesh,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=torch.device('cuda'),
|
2023-03-10 01:53:52 +00:00
|
|
|
sharding_spec=sharding_spec,
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape=entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
rst_dict = layout_converter.shard_transform_layout(layout)
|
|
|
|
|
|
|
|
for layout, comm_spec in rst_dict.items():
|
|
|
|
print(f'{layout.sharding_spec.sharding_sequence}: {comm_spec}')
|
|
|
|
|
|
|
|
Output:
|
|
|
|
[S01, R, R]: CommSpec:(comm_pattern:SPLIT_FWD_GATHER_BWD, gather_dim:0, shard_dim:0, logical_process_axis:1)
|
|
|
|
[S0, S1, R]: CommSpec:(comm_pattern:SPLIT_FWD_GATHER_BWD, gather_dim:1, shard_dim:1, logical_process_axis:1)
|
|
|
|
[S0, R, S1]: CommSpec:(comm_pattern:SPLIT_FWD_GATHER_BWD, gather_dim:2, shard_dim:2, logical_process_axis:1)
|
|
|
|
'''
|
|
|
|
valid_spec_dict = {}
|
|
|
|
comm_pattern = CollectiveCommPattern.SPLIT_FWD_GATHER_BWD
|
|
|
|
source_spec = source_layout.sharding_spec
|
2023-06-09 01:41:27 +00:00
|
|
|
process_groups_dict = source_layout.device_mesh.process_groups_dict
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
# legal sharding dims means the mesh_id is still available to use.
|
2023-06-15 10:03:38 +00:00
|
|
|
legal_sharding_dims = [i for i in range(len(source_layout.device_mesh.shape))]
|
2023-03-10 01:53:52 +00:00
|
|
|
for dim, shard_list in source_spec.dim_partition_dict.items():
|
|
|
|
for element in shard_list:
|
|
|
|
legal_sharding_dims.remove(element)
|
|
|
|
|
|
|
|
if len(legal_sharding_dims) == 0:
|
|
|
|
return valid_spec_dict
|
|
|
|
|
|
|
|
tensor_dims = source_spec.dims
|
|
|
|
|
|
|
|
for index in range(tensor_dims):
|
|
|
|
if index not in source_spec.dim_partition_dict:
|
|
|
|
shard_list_list = shard_simulator((index, []), legal_sharding_dims)
|
|
|
|
else:
|
|
|
|
shard_list_list = shard_simulator((index, source_spec.dim_partition_dict[index]), legal_sharding_dims)
|
|
|
|
if not shard_list_list:
|
|
|
|
continue
|
|
|
|
for shard_list in shard_list_list:
|
|
|
|
new_dim_partition_dict = deepcopy(source_spec.dim_partition_dict)
|
|
|
|
new_dim_partition_dict[index] = shard_list
|
|
|
|
|
|
|
|
# generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec
|
|
|
|
shard_dim = index
|
|
|
|
logical_process_axis = shard_list[-1]
|
|
|
|
comm_spec = CommSpec(comm_pattern,
|
2023-06-09 01:41:27 +00:00
|
|
|
process_groups_dict,
|
2023-03-10 01:53:52 +00:00
|
|
|
gather_dim=shard_dim,
|
|
|
|
shard_dim=shard_dim,
|
|
|
|
logical_process_axis=logical_process_axis)
|
|
|
|
|
|
|
|
# generate new sharding spec
|
|
|
|
try:
|
|
|
|
new_sharding_spec = ShardingSpec(dim_size=source_spec.dims,
|
|
|
|
dim_partition_dict=new_dim_partition_dict)
|
|
|
|
new_layout = Layout(device_mesh=source_layout.device_mesh,
|
|
|
|
sharding_spec=new_sharding_spec,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=source_layout.device_type,
|
|
|
|
entire_shape=source_layout.entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
valid_spec_dict[new_layout] = comm_spec
|
2023-03-21 05:24:18 +00:00
|
|
|
except LayoutException:
|
2023-03-10 01:53:52 +00:00
|
|
|
pass
|
|
|
|
return valid_spec_dict
|
|
|
|
|
|
|
|
def get_all_one_step_transform_spec(self, source_layout: Layout) -> Dict[Layout, CommSpec]:
|
|
|
|
'''
|
|
|
|
Get all valid layouts from source_layout with one step transform.
|
|
|
|
|
|
|
|
Note:
|
|
|
|
all-gather will eliminate a sharding dimension, all-to-all will keep sharding dimension same as before,
|
|
|
|
and shard will add a sharding dimension. Therefore, the result of above operations are mutual exclusive,
|
|
|
|
we could safely put them together.
|
|
|
|
|
|
|
|
Argument:
|
|
|
|
source_layout(Layout): the layout to be transformer.
|
|
|
|
|
|
|
|
Return:
|
|
|
|
valid_spec_dict(Dict[Layout, CommSpec]): all valid layouts from source_layout with one step transform.
|
|
|
|
'''
|
|
|
|
valid_spec_dict = {}
|
|
|
|
valid_spec_dict.update(self.all_gather_transform_layouts(source_layout))
|
|
|
|
valid_spec_dict.update(self.all_to_all_transform_layout(source_layout))
|
|
|
|
valid_spec_dict.update(self.shard_transform_layout(source_layout))
|
|
|
|
return valid_spec_dict
|
|
|
|
|
|
|
|
def layout_converting(self, source_layout: Layout,
|
|
|
|
target_layout: Layout) -> Tuple[List[Layout], List[CommSpec], float]:
|
|
|
|
'''
|
|
|
|
This method will find a path to transform source_layout to target_layout with
|
|
|
|
a greedy algorithm.
|
|
|
|
The basic idea is:
|
|
|
|
Step1:
|
|
|
|
Generate all one-step transform sequences from source_layout.
|
|
|
|
Step2:
|
|
|
|
Pick the 'best' layout following the heuristic function.
|
|
|
|
Step3:
|
|
|
|
Repeat above steps until the source layout transform to target layout.
|
|
|
|
|
|
|
|
Additionally, to avoid repeating the path search in runtime, we cached all solved path
|
|
|
|
in auto parallel strategy building time, which could handle most of cases in runtime.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
source_layout(Layout): the layout to be transformed.
|
|
|
|
target_layout(Layout): the layout to be achieved after a serious of transforms.
|
|
|
|
|
|
|
|
Return:
|
|
|
|
transform_path(List[Layout]): The transform path from source_layout to target_layout,
|
|
|
|
it contains the source_layout and target_layout.
|
|
|
|
comm_action_sequence(List[CommSpec]): Keep the communication operations to complete the layout converting in order.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
# [[0, 1,
|
|
|
|
# [2, 3]]
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape = (4, 4, 4)
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
dim_partition_source = {1: [0, 1]}
|
|
|
|
dim_partition_target = {0: [0, 1]}
|
|
|
|
|
|
|
|
# [R,S01,R]
|
|
|
|
sharding_spec_source = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_source)
|
|
|
|
source_layout = Layout(device_mesh=device_mesh,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=torch.device('cuda'),
|
2023-03-10 01:53:52 +00:00
|
|
|
sharding_spec=sharding_spec_source,
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape=entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
# [S01,R,R]
|
|
|
|
sharding_spec_target = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_target)
|
|
|
|
target_layout = Layout(device_mesh=device_mesh,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=torch.device('cuda'),
|
2023-03-10 01:53:52 +00:00
|
|
|
sharding_spec=sharding_spec_target,
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape=entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
transform_path, comm_action_sequence = layout_converter.layout_converting(source_layout, target_layout)
|
|
|
|
transform_path_str = '->'.join([str(layout.sharding_spec.sharding_sequence) for layout in transform_path])
|
|
|
|
print(transform_path_str)
|
|
|
|
|
|
|
|
output:
|
|
|
|
[R, S01, R]->[R, S0, R]->[S0, R, R]->[S01, R, R]
|
|
|
|
'''
|
|
|
|
source_spec = source_layout.sharding_spec
|
|
|
|
target_spec = target_layout.sharding_spec
|
|
|
|
MAX_TRANSFORM_STEPS = 20
|
|
|
|
total_steps = 0
|
|
|
|
transform_path = []
|
|
|
|
comm_action_sequence = []
|
|
|
|
spec_pairs = (str(source_spec.sharding_sequence), str(target_spec.sharding_sequence))
|
|
|
|
|
|
|
|
if spec_pairs in self.cached_solution:
|
|
|
|
return self.cached_solution[spec_pairs]
|
|
|
|
|
|
|
|
# We do nothing if the sharding spec is all the same.
|
|
|
|
if source_spec.spec_diff(target_spec) == 0:
|
|
|
|
self.cached_solution[spec_pairs] = (transform_path, comm_action_sequence)
|
|
|
|
return (
|
|
|
|
transform_path,
|
|
|
|
comm_action_sequence,
|
|
|
|
)
|
|
|
|
|
|
|
|
temp_sharding_layout = source_layout
|
|
|
|
|
|
|
|
transform_path.append(temp_sharding_layout)
|
|
|
|
# To avoid dead loop, the loop will break after MAX_TRANSFORM_STEPS transforms
|
|
|
|
while total_steps <= MAX_TRANSFORM_STEPS:
|
|
|
|
valid_transform_spec_dict = self.get_all_one_step_transform_spec(temp_sharding_layout)
|
|
|
|
best_difference_score = math.inf
|
|
|
|
|
|
|
|
for layout, comm_spec in valid_transform_spec_dict.items():
|
|
|
|
sharding_spec = layout.sharding_spec
|
|
|
|
spec_difference = sharding_spec.spec_diff(target_spec)
|
|
|
|
|
|
|
|
if spec_difference == 0:
|
|
|
|
transform_path.append(layout)
|
|
|
|
comm_action_sequence.append(comm_spec)
|
|
|
|
self.cached_solution[spec_pairs] = (transform_path, comm_action_sequence)
|
|
|
|
return (transform_path, comm_action_sequence)
|
|
|
|
|
|
|
|
if spec_difference < best_difference_score:
|
|
|
|
temp_sharding_layout = layout
|
|
|
|
temp_comm_spec = comm_spec
|
|
|
|
best_difference_score = spec_difference
|
|
|
|
|
|
|
|
transform_path.append(temp_sharding_layout)
|
|
|
|
comm_action_sequence.append(temp_comm_spec)
|
|
|
|
|
|
|
|
total_steps += 1
|
|
|
|
|
|
|
|
raise RuntimeError(f"Could not find a valid transform path with in {MAX_TRANSFORM_STEPS} steps.")
|
|
|
|
|
|
|
|
def get_total_comm_cost(self, source_layout: Layout, target_layout: Layout) -> Dict[str, float]:
|
|
|
|
'''
|
|
|
|
Get the total communication cost of the layout converting process.
|
|
|
|
'''
|
|
|
|
transform_path, comm_action_sequence = self.layout_converting(source_layout, target_layout)
|
|
|
|
total_cost = {'forward': 0.0, 'backward': 0.0, 'total': 0.0}
|
|
|
|
for layout, comm_spec in zip(transform_path, comm_action_sequence):
|
|
|
|
cost_dict = get_comm_cost(layout, comm_spec, self.forward_only)
|
|
|
|
for key in total_cost:
|
|
|
|
total_cost[key] += cost_dict[key]
|
|
|
|
return total_cost
|
|
|
|
|
|
|
|
def apply(self, tensor: torch.Tensor, source_layout: Layout, target_layout: Layout) -> torch.Tensor:
|
|
|
|
'''
|
|
|
|
Apply target_layout to tensor with source layout, the transform path is generated by the
|
|
|
|
layout_converting method.
|
|
|
|
|
|
|
|
Argument:
|
|
|
|
tensor (torch.Tensor): The tensor to be redistributed.
|
|
|
|
source_layout(Layout): The source layout of the tensor.
|
|
|
|
target_layout (Layout): The tensor will be redistributed to the target_layout.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
layout_converter = LayoutConverter()
|
|
|
|
dim_partition_source = {0: [0]}
|
|
|
|
dim_partition_target = {1: [0]}
|
|
|
|
physical_mesh_id = torch.arange(0, 4)
|
|
|
|
mesh_shape = (2, 2)
|
|
|
|
# [[0, 1,
|
|
|
|
# [2, 3]]
|
|
|
|
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape = (4, 4, 4)
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
# [S0,R,R]
|
|
|
|
sharding_spec_source = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_source)
|
|
|
|
source_layout = Layout(device_mesh=device_mesh,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=torch.device('cuda'),
|
2023-03-10 01:53:52 +00:00
|
|
|
sharding_spec=sharding_spec_source,
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape=entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
# [R,S0,R]
|
|
|
|
sharding_spec_target = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_target)
|
|
|
|
target_layout = Layout(device_mesh=device_mesh,
|
2023-06-09 01:41:27 +00:00
|
|
|
device_type=torch.device('cuda'),
|
2023-03-10 01:53:52 +00:00
|
|
|
sharding_spec=sharding_spec_target,
|
2023-06-09 01:41:27 +00:00
|
|
|
entire_shape=entire_shape)
|
2023-03-10 01:53:52 +00:00
|
|
|
|
|
|
|
if rank in (0, 1):
|
|
|
|
sharded_tensor_0 = torch.zeros(2, 1)
|
|
|
|
sharded_tensor_1 = torch.ones(2, 1)
|
|
|
|
# tensor([[0., 1.],
|
|
|
|
# [0., 1.]])
|
|
|
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
|
|
|
if rank in (2, 3):
|
|
|
|
sharded_tensor_0 = torch.ones(2, 1) * 2
|
|
|
|
sharded_tensor_1 = torch.ones(2, 1) * 3
|
|
|
|
# tensor([[2., 3.],
|
|
|
|
# [2., 3.]])
|
|
|
|
tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda()
|
|
|
|
|
|
|
|
# converted_tensor: [R, S0, R]
|
|
|
|
converted_tensor = layout_converter.apply(tensor_to_comm, source_layout, target_layout)
|
|
|
|
print(converted_tensor)
|
|
|
|
|
|
|
|
Output in rank0 and rank1:
|
|
|
|
tensor([[0.],
|
|
|
|
[0.],
|
|
|
|
[2.],
|
|
|
|
[2.]])
|
|
|
|
|
|
|
|
Output in rank2 and rank3:
|
|
|
|
tensor([[1.],
|
|
|
|
[1.],
|
|
|
|
[3.],
|
|
|
|
[3.]])
|
|
|
|
'''
|
|
|
|
_, comm_action_sequence = self.layout_converting(source_layout, target_layout)
|
|
|
|
for comm_spec in comm_action_sequence:
|
|
|
|
tensor = comm_spec.covert_spec_to_action(tensor)
|
|
|
|
return tensor
|