import math from copy import deepcopy from dataclasses import dataclass from typing import Dict, List, Tuple import numpy as np import torch from colossalai.auto_parallel.tensor_shard.sharding_strategy import MemoryCost, TrainCycleItem from colossalai.context.singleton_meta import SingletonMeta from colossalai.tensor.d_tensor.comm_spec import * from colossalai.tensor.d_tensor.layout import Layout from colossalai.tensor.d_tensor.misc import LayoutException from colossalai.tensor.utils import all_gather_simulator, all_to_all_simulator, shard_simulator from .sharding_spec import ShardingSpec from .utils import get_comm_cost __all__ = ['LayoutConverter', 'LayoutConverterOptions', 'set_layout_converting_options'] @dataclass class LayoutConverterOptions: """ LayoutConverterOptions is a dataclass which specifies the preferences for layout converting. """ # TODO: layout converter option is not implemented yet pass def to_global(distributed_tensor: torch.Tensor, layout: Layout) -> torch.Tensor: layout_converter = LayoutConverter() global_sharding_spec = ShardingSpec(distributed_tensor.dim(), {}) global_layout = Layout(device_mesh=layout.device_mesh, device_type=layout.device_type, sharding_spec=global_sharding_spec, entire_shape=layout.entire_shape) with torch.no_grad(): global_tensor = layout_converter.apply(distributed_tensor, layout, global_layout) return global_tensor def set_layout_converting_options(options: LayoutConverterOptions): """ Configure the shape consistency manager via function call. """ manager = LayoutConverter() manager.options = options class LayoutConverter(metaclass=SingletonMeta): def __init__(self): self._options = None self._forward_only = False self.cached_solution = {} @property def options(self): return self._options @options.setter def options(self, options_: LayoutConverterOptions): assert isinstance(options_, LayoutConverterOptions) self._options = options_ @property def forward_only(self): return self._forward_only @forward_only.setter def forward_only(self, value): assert isinstance(value, bool) self._forward_only = value def all_gather_transform_layouts(self, source_layout: Layout) -> Dict[Layout, CommSpec]: ''' Get all valid layouts from source_layout with single all-gather operation. For the all-gather operation, we just care about the S dimension. Argument: source_layout: the layout to be transformed. Return: valid_spec_dict(Dict[Layout, CommSpec]): all valid layouts from source_layout with single all-gather operation. Example: layout_converter = LayoutConverter() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1, # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) entire_shape = (4, 4, 4) dim_partition_dict = {0: [0], 1: [1]} # [S0,S1,R] sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict) layout = Layout(device_mesh=device_mesh, device_type=torch.device('cuda'), sharding_spec=sharding_spec, entire_shape=entire_shape) rst_dict = layout_converter.all_gather_transform_layouts(layout) for layout, comm_spec in rst_dict.items(): print(f'{layout.sharding_spec.sharding_sequence}: {comm_spec}') Output: [R, S1, R]: CommSpec:(comm_pattern:GATHER_FWD_SPLIT_BWD, gather_dim:0, shard_dim:0, logical_process_axis:0) [S0, R, R]: CommSpec:(comm_pattern:GATHER_FWD_SPLIT_BWD, gather_dim:1, shard_dim:1, logical_process_axis:1) ''' valid_spec_dict = {} comm_pattern = CollectiveCommPattern.GATHER_FWD_SPLIT_BWD source_spec = source_layout.sharding_spec process_groups_dict = source_layout.device_mesh.process_groups_dict for target_pair in source_spec.dim_partition_dict.items(): shard_list = all_gather_simulator(target_pair) index = target_pair[0] new_dim_partition_dict = deepcopy(source_spec.dim_partition_dict) # We won't add empty list into dim_partition_dict # The key will be popped if the related shard_list is empty if shard_list: new_dim_partition_dict[index] = shard_list else: new_dim_partition_dict.pop(index) # generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec gather_dim = index logical_process_axis = target_pair[1][-1] comm_spec = CommSpec( comm_pattern, process_groups_dict=process_groups_dict, gather_dim=gather_dim, # shard_dim will be used during backward shard_dim=gather_dim, logical_process_axis=logical_process_axis) # generate new sharding spec try: new_sharding_spec = ShardingSpec(source_spec.dims, dim_partition_dict=new_dim_partition_dict) new_layout = Layout(device_mesh=source_layout.device_mesh, sharding_spec=new_sharding_spec, device_type=source_layout.device_type, entire_shape=source_layout.entire_shape) valid_spec_dict[new_layout] = comm_spec except LayoutException: pass return valid_spec_dict def all_to_all_transform_layout(self, source_layout: Layout) -> Dict[Layout, CommSpec]: ''' Get all valid layouts from source_layout with single all-to-all operation. For the all-to-all operation, we just care about the pairs containing S dimension. Argument: source_layout(Layout): the layout to be transformed. Return: valid_spec_dict(Dict[Layout, CommSpec]): all valid layouts from source_layout with single all-to-all operation. Example: layout_converter = LayoutConverter() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1, # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) entire_shape = (4, 4, 4) dim_partition_dict = {0: [0], 1: [1]} # [S0,S1,R] sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict) layout = Layout(device_mesh=device_mesh, device_type=torch.device('cuda'), sharding_spec=sharding_spec, entire_shape=entire_shape) rst_dict = layout_converter.all_to_all_transform_layout(layout) for layout, comm_spec in rst_dict.items(): print(f'{layout.sharding_spec.sharding_sequence}: {comm_spec}') Output: [S01, R, R]: CommSpec:(comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, gather_dim:1, shard_dim:0, logical_process_axis: 1) [R, S1, S0]: CommSpec:(comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, gather_dim:0, shard_dim:2, logical_process_axis: 0) [S0, R, S1]: CommSpec:(comm_pattern:ALL2ALL_FWD_ALL2ALL_BWD, gather_dim:1, shard_dim:2, logical_process_axis: 1) ''' valid_spec_dict = {} comm_pattern = CollectiveCommPattern.ALL2ALL_FWD_ALL2ALL_BWD process_groups_dict = source_layout.device_mesh.process_groups_dict source_spec = source_layout.sharding_spec tensor_dims = source_spec.dims for f_index in range(tensor_dims - 1): for b_index in range(f_index + 1, tensor_dims): # skip (R, R) cases if f_index not in source_spec.dim_partition_dict and b_index not in source_spec.dim_partition_dict: continue else: if f_index in source_spec.dim_partition_dict: # skip (S01, R) -> (R, S01) is NOT allowed if len(source_spec.dim_partition_dict[f_index]) >= 2: continue f_target_pair = (f_index, deepcopy(source_spec.dim_partition_dict[f_index])) else: f_target_pair = (f_index, []) if b_index in source_spec.dim_partition_dict: # skip (R, S01) -> (S01, R) is NOT allowed if len(source_spec.dim_partition_dict[b_index]) >= 2: continue b_target_pair = (b_index, deepcopy(source_spec.dim_partition_dict[b_index])) else: b_target_pair = (b_index, []) # skip (S1, S0) -> S10 if f_target_pair[1] and b_target_pair[1] and f_target_pair[1][0] >= b_target_pair[1][0]: continue f_shard_list, b_shard_list = all_to_all_simulator(f_target_pair, b_target_pair) f_index = f_target_pair[0] b_index = b_target_pair[0] # generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec if len(f_shard_list) < len(f_target_pair[1]): gather_dim = f_index shard_dim = b_index logical_process_axis = f_target_pair[1][-1] else: gather_dim = b_index shard_dim = f_index logical_process_axis = b_target_pair[1][-1] comm_spec = CommSpec(comm_pattern, process_groups_dict, gather_dim=gather_dim, shard_dim=shard_dim, logical_process_axis=logical_process_axis) new_dim_partition_dict = deepcopy(source_spec.dim_partition_dict) # We won't add empty list into dim_partition_dict # The key will be popped if the related shard_list is empty if f_shard_list: new_dim_partition_dict[f_index] = f_shard_list else: new_dim_partition_dict.pop(f_index) if b_shard_list: new_dim_partition_dict[b_index] = b_shard_list else: new_dim_partition_dict.pop(b_index) # generate new sharding spec try: new_sharding_spec = ShardingSpec(source_spec.dims, dim_partition_dict=new_dim_partition_dict) new_layout = Layout(device_mesh=source_layout.device_mesh, sharding_spec=new_sharding_spec, device_type=source_layout.device_type, entire_shape=source_layout.entire_shape) valid_spec_dict[new_layout] = comm_spec except LayoutException: pass return valid_spec_dict def shard_transform_layout(self, source_layout: Layout) -> Dict[Layout, CommSpec]: ''' Get all valid layouts from source_layout with single shard operation. For the sharding operation, we just care about legal sharding dimensions. Argument: source_layout(Layout): the layout to be transformed. Return: valid_spec_dict(Dict[Layout, CommSpec]): all valid layouts from source_layout with single shard operation. Example: layout_converter = LayoutConverter() physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1, # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) entire_shape = (4, 4, 4) dim_partition_dict = {0: [0]} # [S0,R,R] sharding_spec = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_dict) layout = Layout(device_mesh=device_mesh, device_type=torch.device('cuda'), sharding_spec=sharding_spec, entire_shape=entire_shape) rst_dict = layout_converter.shard_transform_layout(layout) for layout, comm_spec in rst_dict.items(): print(f'{layout.sharding_spec.sharding_sequence}: {comm_spec}') Output: [S01, R, R]: CommSpec:(comm_pattern:SPLIT_FWD_GATHER_BWD, gather_dim:0, shard_dim:0, logical_process_axis:1) [S0, S1, R]: CommSpec:(comm_pattern:SPLIT_FWD_GATHER_BWD, gather_dim:1, shard_dim:1, logical_process_axis:1) [S0, R, S1]: CommSpec:(comm_pattern:SPLIT_FWD_GATHER_BWD, gather_dim:2, shard_dim:2, logical_process_axis:1) ''' valid_spec_dict = {} comm_pattern = CollectiveCommPattern.SPLIT_FWD_GATHER_BWD source_spec = source_layout.sharding_spec process_groups_dict = source_layout.device_mesh.process_groups_dict # legal sharding dims means the mesh_id is still available to use. legal_sharding_dims = [i for i in range(len(source_layout.device_mesh.shape))] for dim, shard_list in source_spec.dim_partition_dict.items(): for element in shard_list: legal_sharding_dims.remove(element) if len(legal_sharding_dims) == 0: return valid_spec_dict tensor_dims = source_spec.dims for index in range(tensor_dims): if index not in source_spec.dim_partition_dict: shard_list_list = shard_simulator((index, []), legal_sharding_dims) else: shard_list_list = shard_simulator((index, source_spec.dim_partition_dict[index]), legal_sharding_dims) if not shard_list_list: continue for shard_list in shard_list_list: new_dim_partition_dict = deepcopy(source_spec.dim_partition_dict) new_dim_partition_dict[index] = shard_list # generate the CommSpec to record the action of source_sharding_spec->new_sharding_spec shard_dim = index logical_process_axis = shard_list[-1] comm_spec = CommSpec(comm_pattern, process_groups_dict, gather_dim=shard_dim, shard_dim=shard_dim, logical_process_axis=logical_process_axis) # generate new sharding spec try: new_sharding_spec = ShardingSpec(dim_size=source_spec.dims, dim_partition_dict=new_dim_partition_dict) new_layout = Layout(device_mesh=source_layout.device_mesh, sharding_spec=new_sharding_spec, device_type=source_layout.device_type, entire_shape=source_layout.entire_shape) valid_spec_dict[new_layout] = comm_spec except LayoutException: pass return valid_spec_dict def get_all_one_step_transform_spec(self, source_layout: Layout) -> Dict[Layout, CommSpec]: ''' Get all valid layouts from source_layout with one step transform. Note: all-gather will eliminate a sharding dimension, all-to-all will keep sharding dimension same as before, and shard will add a sharding dimension. Therefore, the result of above operations are mutual exclusive, we could safely put them together. Argument: source_layout(Layout): the layout to be transformer. Return: valid_spec_dict(Dict[Layout, CommSpec]): all valid layouts from source_layout with one step transform. ''' valid_spec_dict = {} valid_spec_dict.update(self.all_gather_transform_layouts(source_layout)) valid_spec_dict.update(self.all_to_all_transform_layout(source_layout)) valid_spec_dict.update(self.shard_transform_layout(source_layout)) return valid_spec_dict def layout_converting(self, source_layout: Layout, target_layout: Layout) -> Tuple[List[Layout], List[CommSpec], float]: ''' This method will find a path to transform source_layout to target_layout with a greedy algorithm. The basic idea is: Step1: Generate all one-step transform sequences from source_layout. Step2: Pick the 'best' layout following the heuristic function. Step3: Repeat above steps until the source layout transform to target layout. Additionally, to avoid repeating the path search in runtime, we cached all solved path in auto parallel strategy building time, which could handle most of cases in runtime. Args: source_layout(Layout): the layout to be transformed. target_layout(Layout): the layout to be achieved after a serious of transforms. Return: transform_path(List[Layout]): The transform path from source_layout to target_layout, it contains the source_layout and target_layout. comm_action_sequence(List[CommSpec]): Keep the communication operations to complete the layout converting in order. Example: physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1, # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) entire_shape = (4, 4, 4) dim_partition_source = {1: [0, 1]} dim_partition_target = {0: [0, 1]} # [R,S01,R] sharding_spec_source = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_source) source_layout = Layout(device_mesh=device_mesh, device_type=torch.device('cuda'), sharding_spec=sharding_spec_source, entire_shape=entire_shape) # [S01,R,R] sharding_spec_target = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_target) target_layout = Layout(device_mesh=device_mesh, device_type=torch.device('cuda'), sharding_spec=sharding_spec_target, entire_shape=entire_shape) transform_path, comm_action_sequence = layout_converter.layout_converting(source_layout, target_layout) transform_path_str = '->'.join([str(layout.sharding_spec.sharding_sequence) for layout in transform_path]) print(transform_path_str) output: [R, S01, R]->[R, S0, R]->[S0, R, R]->[S01, R, R] ''' source_spec = source_layout.sharding_spec target_spec = target_layout.sharding_spec MAX_TRANSFORM_STEPS = 20 total_steps = 0 transform_path = [] comm_action_sequence = [] spec_pairs = (str(source_spec.sharding_sequence), str(target_spec.sharding_sequence)) if spec_pairs in self.cached_solution: return self.cached_solution[spec_pairs] # We do nothing if the sharding spec is all the same. if source_spec.spec_diff(target_spec) == 0: self.cached_solution[spec_pairs] = (transform_path, comm_action_sequence) return ( transform_path, comm_action_sequence, ) temp_sharding_layout = source_layout transform_path.append(temp_sharding_layout) # To avoid dead loop, the loop will break after MAX_TRANSFORM_STEPS transforms while total_steps <= MAX_TRANSFORM_STEPS: valid_transform_spec_dict = self.get_all_one_step_transform_spec(temp_sharding_layout) best_difference_score = math.inf for layout, comm_spec in valid_transform_spec_dict.items(): sharding_spec = layout.sharding_spec spec_difference = sharding_spec.spec_diff(target_spec) if spec_difference == 0: transform_path.append(layout) comm_action_sequence.append(comm_spec) self.cached_solution[spec_pairs] = (transform_path, comm_action_sequence) return (transform_path, comm_action_sequence) if spec_difference < best_difference_score: temp_sharding_layout = layout temp_comm_spec = comm_spec best_difference_score = spec_difference transform_path.append(temp_sharding_layout) comm_action_sequence.append(temp_comm_spec) total_steps += 1 raise RuntimeError(f"Could not find a valid transform path with in {MAX_TRANSFORM_STEPS} steps.") def get_total_comm_cost(self, source_layout: Layout, target_layout: Layout) -> Dict[str, float]: ''' Get the total communication cost of the layout converting process. ''' transform_path, comm_action_sequence = self.layout_converting(source_layout, target_layout) total_cost = {'forward': 0.0, 'backward': 0.0, 'total': 0.0} for layout, comm_spec in zip(transform_path, comm_action_sequence): cost_dict = get_comm_cost(layout, comm_spec, self.forward_only) for key in total_cost: total_cost[key] += cost_dict[key] return total_cost def apply(self, tensor: torch.Tensor, source_layout: Layout, target_layout: Layout) -> torch.Tensor: ''' Apply target_layout to tensor with source layout, the transform path is generated by the layout_converting method. Argument: tensor (torch.Tensor): The tensor to be redistributed. source_layout(Layout): The source layout of the tensor. target_layout (Layout): The tensor will be redistributed to the target_layout. Example: layout_converter = LayoutConverter() dim_partition_source = {0: [0]} dim_partition_target = {1: [0]} physical_mesh_id = torch.arange(0, 4) mesh_shape = (2, 2) # [[0, 1, # [2, 3]] device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True) entire_shape = (4, 4, 4) # [S0,R,R] sharding_spec_source = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_source) source_layout = Layout(device_mesh=device_mesh, device_type=torch.device('cuda'), sharding_spec=sharding_spec_source, entire_shape=entire_shape) # [R,S0,R] sharding_spec_target = ShardingSpec(dim_size=3, dim_partition_dict=dim_partition_target) target_layout = Layout(device_mesh=device_mesh, device_type=torch.device('cuda'), sharding_spec=sharding_spec_target, entire_shape=entire_shape) if rank in (0, 1): sharded_tensor_0 = torch.zeros(2, 1) sharded_tensor_1 = torch.ones(2, 1) # tensor([[0., 1.], # [0., 1.]]) tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() if rank in (2, 3): sharded_tensor_0 = torch.ones(2, 1) * 2 sharded_tensor_1 = torch.ones(2, 1) * 3 # tensor([[2., 3.], # [2., 3.]]) tensor_to_comm = torch.cat((sharded_tensor_0, sharded_tensor_1), 1).cuda() # converted_tensor: [R, S0, R] converted_tensor = layout_converter.apply(tensor_to_comm, source_layout, target_layout) print(converted_tensor) Output in rank0 and rank1: tensor([[0.], [0.], [2.], [2.]]) Output in rank2 and rank3: tensor([[1.], [1.], [3.], [3.]]) ''' _, comm_action_sequence = self.layout_converting(source_layout, target_layout) for comm_spec in comm_action_sequence: tensor = comm_spec.covert_spec_to_action(tensor) return tensor