mirror of https://github.com/hpcaitech/ColossalAI
117 lines
4.3 KiB
Python
117 lines
4.3 KiB
Python
|
import argparse
|
||
|
import os
|
||
|
import time
|
||
|
|
||
|
import torch
|
||
|
from _utils import print_perf_stats
|
||
|
from transformers import AutoTokenizer
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.inference.tensor_parallel.engine import TPInferEngine
|
||
|
from colossalai.logging import disable_existing_loggers
|
||
|
from colossalai.shardformer import ShardConfig
|
||
|
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration
|
||
|
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||
|
|
||
|
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||
|
|
||
|
|
||
|
def run_chatglm2_test(args):
|
||
|
chatglm2_model_path = args.path
|
||
|
max_batch_size = args.batch_size
|
||
|
max_input_len = args.input_len
|
||
|
max_output_len = args.output_len
|
||
|
args.test_mode
|
||
|
|
||
|
print("max_batch_size : " + str(max_batch_size))
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
|
||
|
model = ChatGLMForConditionalGeneration.from_pretrained(chatglm2_model_path, pad_token_id=tokenizer.eos_token_id)
|
||
|
model = model.half()
|
||
|
model.config
|
||
|
|
||
|
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
|
||
|
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
|
||
|
|
||
|
generate_kwargs = dict(max_new_tokens=1, do_sample=False)
|
||
|
input_tokens = {
|
||
|
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
|
||
|
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
|
||
|
}
|
||
|
|
||
|
iters = 10
|
||
|
prefill_times = []
|
||
|
|
||
|
warmup = 3
|
||
|
|
||
|
for i in range(iters):
|
||
|
torch.cuda.synchronize()
|
||
|
start = time.time()
|
||
|
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
|
||
|
torch.cuda.synchronize()
|
||
|
end = time.time()
|
||
|
out_len = outputs.shape[1]
|
||
|
print("generation time {} s".format(str(end - start)))
|
||
|
print(out_len - max_input_len)
|
||
|
prefill_times.append((end - start) / (out_len - max_input_len))
|
||
|
|
||
|
prefill_times = prefill_times[warmup:]
|
||
|
prefill_time_avg = sum(prefill_times) / len(prefill_times)
|
||
|
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
||
|
|
||
|
times = []
|
||
|
decoder_times = []
|
||
|
for i in range(iters):
|
||
|
torch.cuda.synchronize()
|
||
|
start = time.time()
|
||
|
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
|
||
|
torch.cuda.synchronize()
|
||
|
end = time.time()
|
||
|
out_len = outputs.shape[1]
|
||
|
print("generation time {} s".format(str(end - start)))
|
||
|
print(out_len - max_input_len)
|
||
|
times.append((end - start) / (out_len - max_input_len))
|
||
|
if args.test_mode == "decoder_test":
|
||
|
decoder_times.append((end - start - prefill_time_avg) / (out_len - max_input_len - 1))
|
||
|
|
||
|
times = times[warmup:]
|
||
|
latency = sum(times) / len(times)
|
||
|
print("total process latency is : " + str(latency) + " s")
|
||
|
print("total throughput is : " + str(1 / latency * max_batch_size))
|
||
|
|
||
|
if args.test_mode == "decoder_test":
|
||
|
decoder_times = decoder_times[warmup:]
|
||
|
latency = sum(decoder_times) / len(decoder_times)
|
||
|
|
||
|
print("decoder process latency is : " + str(latency) + " s")
|
||
|
print("decoder throughput is : " + str(1 / latency * max_batch_size))
|
||
|
|
||
|
print_perf_stats(times, model.config, max_batch_size)
|
||
|
|
||
|
|
||
|
def check_chatglm2(rank, world_size, port, args):
|
||
|
disable_existing_loggers()
|
||
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||
|
run_chatglm2_test(args)
|
||
|
|
||
|
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_chatglm2(args):
|
||
|
spawn(check_chatglm2, args.tp_size, args=args)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
|
||
|
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
|
||
|
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
|
||
|
parser.add_argument("--input_len", type=int, default=256, help="Maximum input length")
|
||
|
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
|
||
|
parser.add_argument(
|
||
|
"--test_mode", type=str, help="Test mode", default="e2e_test", choices=["e2e_test", "decoder_test"]
|
||
|
)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
test_chatglm2(args)
|