mirror of https://github.com/hpcaitech/ColossalAI
[Inference]ADD Bench Chatglm2 script (#4963)
* add bench chatglm * fix bug and make utils --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com>pull/4966/head
parent
785802e809
commit
c6cd629e7a
|
@ -0,0 +1,19 @@
|
|||
def print_perf_stats(latency_set, config, bs, warmup=3):
|
||||
# trim warmup queries
|
||||
latency_set = list(latency_set)
|
||||
latency_set = latency_set[warmup:]
|
||||
count = len(latency_set)
|
||||
|
||||
if count > 0:
|
||||
latency_set.sort()
|
||||
avg = sum(latency_set) / count
|
||||
num_layers = (
|
||||
getattr(config, "num_layers") if hasattr(config, "num_layers") else getattr(config, "num_hidden_layers")
|
||||
)
|
||||
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
|
||||
num_bytes = 2 # float16
|
||||
|
||||
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
|
||||
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
|
||||
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
|
||||
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs))
|
|
@ -3,6 +3,7 @@ import os
|
|||
import time
|
||||
|
||||
import torch
|
||||
from _utils import print_perf_stats
|
||||
from transformers import BloomForCausalLM, BloomTokenizerFast
|
||||
|
||||
import colossalai
|
||||
|
@ -14,25 +15,6 @@ from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_us
|
|||
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||||
|
||||
|
||||
def print_perf_stats(latency_set, config, bs, warmup=3):
|
||||
# trim warmup queries
|
||||
latency_set = list(latency_set)
|
||||
latency_set = latency_set[warmup:]
|
||||
count = len(latency_set)
|
||||
|
||||
if count > 0:
|
||||
latency_set.sort()
|
||||
avg = sum(latency_set) / count
|
||||
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
|
||||
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
|
||||
num_bytes = 2 # float16
|
||||
|
||||
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
|
||||
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
|
||||
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
|
||||
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs))
|
||||
|
||||
|
||||
def bench_bloom(args):
|
||||
model_path = args.path
|
||||
max_batch_size = args.batch_size
|
||||
|
|
|
@ -0,0 +1,116 @@
|
|||
import argparse
|
||||
import os
|
||||
import time
|
||||
|
||||
import torch
|
||||
from _utils import print_perf_stats
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
import colossalai
|
||||
from colossalai.inference.tensor_parallel.engine import TPInferEngine
|
||||
from colossalai.logging import disable_existing_loggers
|
||||
from colossalai.shardformer import ShardConfig
|
||||
from colossalai.shardformer.modeling.chatglm2_6b.modeling_chatglm import ChatGLMForConditionalGeneration
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||||
|
||||
|
||||
def run_chatglm2_test(args):
|
||||
chatglm2_model_path = args.path
|
||||
max_batch_size = args.batch_size
|
||||
max_input_len = args.input_len
|
||||
max_output_len = args.output_len
|
||||
args.test_mode
|
||||
|
||||
print("max_batch_size : " + str(max_batch_size))
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
|
||||
model = ChatGLMForConditionalGeneration.from_pretrained(chatglm2_model_path, pad_token_id=tokenizer.eos_token_id)
|
||||
model = model.half()
|
||||
model.config
|
||||
|
||||
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True)
|
||||
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
|
||||
|
||||
generate_kwargs = dict(max_new_tokens=1, do_sample=False)
|
||||
input_tokens = {
|
||||
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
|
||||
}
|
||||
|
||||
iters = 10
|
||||
prefill_times = []
|
||||
|
||||
warmup = 3
|
||||
|
||||
for i in range(iters):
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
|
||||
torch.cuda.synchronize()
|
||||
end = time.time()
|
||||
out_len = outputs.shape[1]
|
||||
print("generation time {} s".format(str(end - start)))
|
||||
print(out_len - max_input_len)
|
||||
prefill_times.append((end - start) / (out_len - max_input_len))
|
||||
|
||||
prefill_times = prefill_times[warmup:]
|
||||
prefill_time_avg = sum(prefill_times) / len(prefill_times)
|
||||
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
||||
|
||||
times = []
|
||||
decoder_times = []
|
||||
for i in range(iters):
|
||||
torch.cuda.synchronize()
|
||||
start = time.time()
|
||||
outputs = infer_engine.generate(input_tokens, **generate_kwargs)
|
||||
torch.cuda.synchronize()
|
||||
end = time.time()
|
||||
out_len = outputs.shape[1]
|
||||
print("generation time {} s".format(str(end - start)))
|
||||
print(out_len - max_input_len)
|
||||
times.append((end - start) / (out_len - max_input_len))
|
||||
if args.test_mode == "decoder_test":
|
||||
decoder_times.append((end - start - prefill_time_avg) / (out_len - max_input_len - 1))
|
||||
|
||||
times = times[warmup:]
|
||||
latency = sum(times) / len(times)
|
||||
print("total process latency is : " + str(latency) + " s")
|
||||
print("total throughput is : " + str(1 / latency * max_batch_size))
|
||||
|
||||
if args.test_mode == "decoder_test":
|
||||
decoder_times = decoder_times[warmup:]
|
||||
latency = sum(decoder_times) / len(decoder_times)
|
||||
|
||||
print("decoder process latency is : " + str(latency) + " s")
|
||||
print("decoder throughput is : " + str(1 / latency * max_batch_size))
|
||||
|
||||
print_perf_stats(times, model.config, max_batch_size)
|
||||
|
||||
|
||||
def check_chatglm2(rank, world_size, port, args):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
run_chatglm2_test(args)
|
||||
|
||||
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_chatglm2(args):
|
||||
spawn(check_chatglm2, args.tp_size, args=args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
|
||||
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
|
||||
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
|
||||
parser.add_argument("--input_len", type=int, default=256, help="Maximum input length")
|
||||
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
|
||||
parser.add_argument(
|
||||
"--test_mode", type=str, help="Test mode", default="e2e_test", choices=["e2e_test", "decoder_test"]
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
test_chatglm2(args)
|
|
@ -3,6 +3,7 @@ import os
|
|||
import time
|
||||
|
||||
import torch
|
||||
from _utils import print_perf_stats
|
||||
from transformers import LlamaForCausalLM, LlamaTokenizer
|
||||
|
||||
import colossalai
|
||||
|
@ -14,25 +15,6 @@ from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_us
|
|||
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||||
|
||||
|
||||
def print_perf_stats(latency_set, config, bs, warmup=3):
|
||||
torch.cuda.empty_cache()
|
||||
# trim warmup queries
|
||||
latency_set = list(latency_set)
|
||||
latency_set = latency_set[warmup:]
|
||||
count = len(latency_set)
|
||||
|
||||
if count > 0:
|
||||
latency_set.sort()
|
||||
avg = sum(latency_set) / count
|
||||
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
|
||||
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
|
||||
num_bytes = 2
|
||||
|
||||
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
|
||||
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
|
||||
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
|
||||
|
||||
|
||||
def run_llama_test(args):
|
||||
llama_model_path = args.path
|
||||
max_batch_size = args.batch_size
|
||||
|
@ -104,6 +86,8 @@ def run_llama_test(args):
|
|||
print("decoder process latency is : " + str(latency) + " s")
|
||||
print("decoder throughput is : " + str(1 / latency * max_batch_size))
|
||||
|
||||
print_perf_stats(times, model.config, max_batch_size)
|
||||
|
||||
|
||||
def check_llama(rank, world_size, port, args):
|
||||
disable_existing_loggers()
|
||||
|
|
|
@ -1,12 +1,11 @@
|
|||
import argparse
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
|
||||
import torch
|
||||
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
||||
from auto_gptq.nn_modules.qlinear import GeneralQuantLinear
|
||||
from transformers import AutoTokenizer, BloomForCausalLM, BloomTokenizerFast, LlamaForCausalLM, LlamaTokenizer
|
||||
from _utils import print_perf_stats
|
||||
from auto_gptq import AutoGPTQForCausalLM
|
||||
from transformers import BloomTokenizerFast
|
||||
|
||||
import colossalai
|
||||
from colossalai.inference.tensor_parallel.engine import TPInferEngine
|
||||
|
@ -14,30 +13,10 @@ from colossalai.logging import disable_existing_loggers
|
|||
from colossalai.shardformer import ShardConfig
|
||||
from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_use, spawn
|
||||
|
||||
os.environ['TRANSFORMERS_NO_ADVISORY_WARNINGS'] = 'true'
|
||||
|
||||
|
||||
def print_perf_stats(latency_set, config, bs, warmup=3):
|
||||
# trim warmup queries
|
||||
latency_set = list(latency_set)
|
||||
latency_set = latency_set[warmup:]
|
||||
count = len(latency_set)
|
||||
|
||||
if count > 0:
|
||||
latency_set.sort()
|
||||
avg = sum(latency_set) / count
|
||||
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
|
||||
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
|
||||
num_bytes = 2 # float16
|
||||
|
||||
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
|
||||
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
|
||||
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
|
||||
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs))
|
||||
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||||
|
||||
|
||||
def bench_bloom(args):
|
||||
|
||||
pretrained_model_dir = args.path
|
||||
quantized_model_dir = args.quantized_path
|
||||
max_batch_size = args.batch_size
|
||||
|
@ -48,9 +27,9 @@ def bench_bloom(args):
|
|||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# load quantized model to the first GPU
|
||||
model = AutoGPTQForCausalLM.from_quantized(quantized_model_dir,
|
||||
device=torch.cuda.current_device(),
|
||||
inject_fused_attention=False)
|
||||
model = AutoGPTQForCausalLM.from_quantized(
|
||||
quantized_model_dir, device=torch.cuda.current_device(), inject_fused_attention=False
|
||||
)
|
||||
|
||||
model = model.half()
|
||||
|
||||
|
@ -60,22 +39,22 @@ def bench_bloom(args):
|
|||
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
||||
|
||||
input_tokens = {
|
||||
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device='cuda'),
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len), device='cuda')
|
||||
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
|
||||
}
|
||||
|
||||
# init TPInferEngine and shard the original model
|
||||
# To benchmark torch original, comment out the line of optimizing model
|
||||
shard_config = ShardConfig(enable_tensor_parallelism=True if args.tp_size > 1 else False,
|
||||
inference_only=True,
|
||||
inference_gptq=True)
|
||||
shard_config = ShardConfig(
|
||||
enable_tensor_parallelism=True if args.tp_size > 1 else False, inference_only=True, inference_gptq=True
|
||||
)
|
||||
infer_engine = TPInferEngine(model, shard_config, max_batch_size, max_input_len, max_output_len)
|
||||
|
||||
# prepare data for generation
|
||||
generate_kwargs = dict(max_new_tokens=max_output_len, do_sample=False)
|
||||
input_tokens = {
|
||||
"input_ids": torch.randint(10, 1000, (max_batch_size, max_input_len)),
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len))
|
||||
"attention_mask": torch.ones((max_batch_size, max_input_len)),
|
||||
}
|
||||
for t in input_tokens:
|
||||
if torch.is_tensor(input_tokens[t]):
|
||||
|
@ -99,7 +78,7 @@ def bench_bloom(args):
|
|||
|
||||
def check_bloom(rank, world_size, port, args):
|
||||
disable_existing_loggers()
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
||||
bench_bloom(args)
|
||||
|
||||
|
||||
|
@ -111,12 +90,12 @@ def test_bloom(args):
|
|||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-p', '--path', type=str, help='Model path', required=True)
|
||||
parser.add_argument('-q', '--quantized_path', type=str, help='Model path', required=True)
|
||||
parser.add_argument('-tp', '--tp_size', type=int, default=1, help='Tensor parallel size')
|
||||
parser.add_argument('-b', '--batch_size', type=int, default=16, help='Maximum batch size')
|
||||
parser.add_argument('--input_len', type=int, default=1024, help='Maximum input length')
|
||||
parser.add_argument('--output_len', type=int, default=128, help='Maximum output length')
|
||||
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
|
||||
parser.add_argument("-q", "--quantized_path", type=str, help="Model path", required=True)
|
||||
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
|
||||
parser.add_argument("-b", "--batch_size", type=int, default=16, help="Maximum batch size")
|
||||
parser.add_argument("--input_len", type=int, default=1024, help="Maximum input length")
|
||||
parser.add_argument("--output_len", type=int, default=128, help="Maximum output length")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
|
|
@ -3,6 +3,7 @@ import os
|
|||
import time
|
||||
|
||||
import torch
|
||||
from _utils import print_perf_stats
|
||||
from auto_gptq import AutoGPTQForCausalLM
|
||||
from transformers import LlamaTokenizer
|
||||
|
||||
|
@ -15,25 +16,6 @@ from colossalai.testing import clear_cache_before_run, rerun_if_address_is_in_us
|
|||
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
||||
|
||||
|
||||
def print_perf_stats(latency_set, config, bs, warmup=3):
|
||||
# trim warmup queries
|
||||
latency_set = list(latency_set)
|
||||
latency_set = latency_set[warmup:]
|
||||
count = len(latency_set)
|
||||
|
||||
if count > 0:
|
||||
latency_set.sort()
|
||||
avg = sum(latency_set) / count
|
||||
num_layers = getattr(config, "num_layers", config.num_hidden_layers)
|
||||
num_parameters = num_layers * config.hidden_size * config.hidden_size * 12
|
||||
num_bytes = 2
|
||||
|
||||
print("Avg Per Token Latency: {0:8.2f} ms".format(avg * 1000))
|
||||
print("Avg BW: {0:8.2f} GB/s".format(1 / avg * num_parameters * num_bytes / 1e9))
|
||||
print("Avg flops: {0:8.2f} TFlops/s".format(1 / avg * num_parameters * num_bytes * bs / 1e12))
|
||||
print("Avg Throughput: tokens/s: {}".format((1000 / (avg * 1000)) * bs))
|
||||
|
||||
|
||||
def run_llama_test(args):
|
||||
pretrained_model_dir = args.path
|
||||
quantized_model_dir = args.quantized_path
|
||||
|
|
Loading…
Reference in New Issue