2022-03-09 02:39:02 +00:00
|
|
|
import torch
|
|
|
|
import transformers
|
|
|
|
from packaging import version
|
|
|
|
from torch.utils.data import SequentialSampler
|
2022-03-09 05:38:20 +00:00
|
|
|
from transformers import BertConfig, BertForSequenceClassification
|
|
|
|
|
2022-03-09 02:39:02 +00:00
|
|
|
from .registry import non_distributed_component_funcs
|
|
|
|
|
|
|
|
|
|
|
|
def get_bert_data_loader(
|
|
|
|
batch_size,
|
|
|
|
total_samples,
|
|
|
|
sequence_length,
|
|
|
|
device=torch.device('cpu:0'),
|
|
|
|
is_distrbuted=False,
|
|
|
|
):
|
|
|
|
train_data = torch.randint(
|
|
|
|
low=0,
|
|
|
|
high=1000,
|
|
|
|
size=(total_samples, sequence_length),
|
|
|
|
device=device,
|
|
|
|
dtype=torch.long,
|
|
|
|
)
|
|
|
|
train_label = torch.randint(low=0, high=2, size=(total_samples,), device=device, dtype=torch.long)
|
|
|
|
train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
|
|
|
|
if is_distrbuted:
|
|
|
|
sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
|
|
|
|
else:
|
|
|
|
sampler = SequentialSampler(train_dataset)
|
|
|
|
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=sampler)
|
|
|
|
return train_loader
|
|
|
|
|
|
|
|
|
|
|
|
@non_distributed_component_funcs.register(name='bert')
|
|
|
|
def get_training_components():
|
|
|
|
hidden_dim = 8
|
|
|
|
num_head = 4
|
|
|
|
sequence_length = 12
|
|
|
|
num_layer = 2
|
|
|
|
|
|
|
|
def bert_model_builder(checkpoint):
|
2022-03-09 05:38:20 +00:00
|
|
|
config = BertConfig(gradient_checkpointing=checkpoint,
|
|
|
|
hidden_size=hidden_dim,
|
|
|
|
intermediate_size=hidden_dim * 4,
|
|
|
|
num_attention_heads=num_head,
|
|
|
|
max_position_embeddings=sequence_length,
|
|
|
|
num_hidden_layers=num_layer,
|
|
|
|
hidden_dropout_prob=0.,
|
|
|
|
attention_probs_dropout_prob=0.)
|
2022-03-09 02:39:02 +00:00
|
|
|
print('building BertForSequenceClassification model')
|
2022-03-09 03:26:10 +00:00
|
|
|
|
|
|
|
# adapting huggingface BertForSequenceClassification for single unitest calling interface
|
|
|
|
class ModelAaptor(BertForSequenceClassification):
|
|
|
|
|
|
|
|
def forward(self, input_ids, labels):
|
|
|
|
"""
|
|
|
|
inputs: data, label
|
|
|
|
outputs: loss
|
|
|
|
"""
|
|
|
|
return super().forward(input_ids=input_ids, labels=labels)[0]
|
|
|
|
|
|
|
|
model = ModelAaptor(config)
|
2022-03-09 02:39:02 +00:00
|
|
|
if checkpoint and version.parse(transformers.__version__) >= version.parse("4.11.0"):
|
|
|
|
model.gradient_checkpointing_enable()
|
2022-03-09 03:26:10 +00:00
|
|
|
|
2022-03-09 02:39:02 +00:00
|
|
|
return model
|
|
|
|
|
|
|
|
trainloader = get_bert_data_loader(batch_size=2,
|
|
|
|
total_samples=10000,
|
|
|
|
sequence_length=sequence_length,
|
|
|
|
is_distrbuted=True)
|
|
|
|
testloader = get_bert_data_loader(batch_size=2,
|
|
|
|
total_samples=10000,
|
|
|
|
sequence_length=sequence_length,
|
|
|
|
is_distrbuted=True)
|
|
|
|
|
|
|
|
def get_optim(model):
|
|
|
|
return torch.optim.Adam(model.parameters(), lr=0.001)
|
|
|
|
|
|
|
|
criterion = None
|
|
|
|
return bert_model_builder, trainloader, testloader, get_optim, criterion
|