import torch import transformers from packaging import version from torch.utils.data import SequentialSampler from transformers import BertConfig, BertForSequenceClassification from .registry import non_distributed_component_funcs def get_bert_data_loader( batch_size, total_samples, sequence_length, device=torch.device('cpu:0'), is_distrbuted=False, ): train_data = torch.randint( low=0, high=1000, size=(total_samples, sequence_length), device=device, dtype=torch.long, ) train_label = torch.randint(low=0, high=2, size=(total_samples,), device=device, dtype=torch.long) train_dataset = torch.utils.data.TensorDataset(train_data, train_label) if is_distrbuted: sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) else: sampler = SequentialSampler(train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, sampler=sampler) return train_loader @non_distributed_component_funcs.register(name='bert') def get_training_components(): hidden_dim = 8 num_head = 4 sequence_length = 12 num_layer = 2 def bert_model_builder(checkpoint): config = BertConfig(gradient_checkpointing=checkpoint, hidden_size=hidden_dim, intermediate_size=hidden_dim * 4, num_attention_heads=num_head, max_position_embeddings=sequence_length, num_hidden_layers=num_layer, hidden_dropout_prob=0., attention_probs_dropout_prob=0.) print('building BertForSequenceClassification model') # adapting huggingface BertForSequenceClassification for single unitest calling interface class ModelAaptor(BertForSequenceClassification): def forward(self, input_ids, labels): """ inputs: data, label outputs: loss """ return super().forward(input_ids=input_ids, labels=labels)[0] model = ModelAaptor(config) if checkpoint and version.parse(transformers.__version__) >= version.parse("4.11.0"): model.gradient_checkpointing_enable() return model trainloader = get_bert_data_loader(batch_size=2, total_samples=10000, sequence_length=sequence_length, is_distrbuted=True) testloader = get_bert_data_loader(batch_size=2, total_samples=10000, sequence_length=sequence_length, is_distrbuted=True) def get_optim(model): return torch.optim.Adam(model.parameters(), lr=0.001) criterion = None return bert_model_builder, trainloader, testloader, get_optim, criterion