2022-10-18 02:44:23 +00:00
|
|
|
import pytest
|
2022-09-01 11:30:05 +00:00
|
|
|
import timm.models as tmm
|
|
|
|
import torch
|
2022-10-18 02:44:23 +00:00
|
|
|
import torchvision.models as tm
|
2023-04-06 06:51:35 +00:00
|
|
|
|
2022-10-18 02:44:23 +00:00
|
|
|
from colossalai.fx._compatibility import is_compatible_with_meta
|
2022-09-01 11:30:05 +00:00
|
|
|
|
2022-10-18 02:44:23 +00:00
|
|
|
if is_compatible_with_meta():
|
2022-09-07 03:21:04 +00:00
|
|
|
from colossalai.fx.profiler import MetaTensor
|
2022-09-01 11:30:05 +00:00
|
|
|
|
2023-04-06 06:51:35 +00:00
|
|
|
from colossalai.testing import clear_cache_before_run
|
|
|
|
|
2022-09-01 11:30:05 +00:00
|
|
|
tm_models = [
|
2022-09-07 03:21:04 +00:00
|
|
|
tm.vgg11,
|
|
|
|
tm.resnet18,
|
|
|
|
tm.densenet121,
|
|
|
|
tm.mobilenet_v3_small,
|
|
|
|
tm.resnext50_32x4d,
|
2022-09-01 11:30:05 +00:00
|
|
|
tm.wide_resnet50_2,
|
2022-09-07 03:21:04 +00:00
|
|
|
tm.regnet_x_16gf,
|
|
|
|
tm.mnasnet0_5,
|
2022-09-01 11:30:05 +00:00
|
|
|
tm.efficientnet_b0,
|
|
|
|
]
|
|
|
|
|
|
|
|
tmm_models = [
|
2023-09-19 06:20:26 +00:00
|
|
|
tmm.resnest.resnest50d,
|
|
|
|
tmm.beit.beit_base_patch16_224,
|
|
|
|
tmm.cait.cait_s24_224,
|
|
|
|
tmm.efficientnet.efficientnetv2_m,
|
|
|
|
tmm.resmlp_12_224,
|
|
|
|
tmm.vision_transformer.vit_base_patch16_224,
|
|
|
|
tmm.deit_base_distilled_patch16_224,
|
|
|
|
tmm.convnext.convnext_base,
|
|
|
|
tmm.vgg.vgg11,
|
|
|
|
tmm.dpn.dpn68,
|
|
|
|
tmm.densenet.densenet121,
|
|
|
|
tmm.rexnet.rexnet_100,
|
|
|
|
tmm.swin_transformer.swin_base_patch4_window7_224,
|
2022-09-01 11:30:05 +00:00
|
|
|
]
|
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
@pytest.mark.skipif(not is_compatible_with_meta(), reason="torch version is lower than 1.12.0")
|
2023-04-06 06:51:35 +00:00
|
|
|
@clear_cache_before_run()
|
2022-09-01 11:30:05 +00:00
|
|
|
def test_torchvision_models():
|
|
|
|
for m in tm_models:
|
2022-09-23 02:59:47 +00:00
|
|
|
model = m()
|
2023-09-19 06:20:26 +00:00
|
|
|
data = torch.rand(100000, 3, 224, 224, device="meta")
|
|
|
|
model(MetaTensor(data, fake_device=torch.device("cpu"))).sum().backward()
|
2022-09-01 11:30:05 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
@pytest.mark.skipif(not is_compatible_with_meta(), reason="torch version is lower than 1.12.0")
|
2023-04-06 06:51:35 +00:00
|
|
|
@clear_cache_before_run()
|
2022-09-01 11:30:05 +00:00
|
|
|
def test_timm_models():
|
|
|
|
for m in tmm_models:
|
2022-09-23 02:59:47 +00:00
|
|
|
model = m()
|
2023-09-19 06:20:26 +00:00
|
|
|
data = torch.rand(100000, 3, 224, 224, device="meta")
|
|
|
|
model(MetaTensor(data, fake_device=torch.device("cpu"))).sum().backward()
|
2022-09-01 11:30:05 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
if __name__ == "__main__":
|
2022-09-01 11:30:05 +00:00
|
|
|
test_torchvision_models()
|
|
|
|
test_timm_models()
|