2021-10-28 16:21:23 +00:00
|
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
|
|
|
|
from .delayed import WarmupScheduler
|
|
|
|
|
|
|
|
|
|
|
|
class PolynomialLR(_LRScheduler):
|
|
|
|
"""Polynomial learning rate scheduler.
|
2022-01-21 02:44:30 +00:00
|
|
|
|
2022-03-25 05:02:39 +00:00
|
|
|
Args:
|
|
|
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
|
|
|
|
total_steps (int): Number of total training steps.
|
|
|
|
end_lr (float, optional): Minimum learning rate, defaults to 0.0001.
|
|
|
|
power (float, optional): The power of polynomial, defaults to 1.0.
|
|
|
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
|
|
|
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
|
|
|
|
2022-07-12 10:18:14 +00:00
|
|
|
def __init__(self,
|
|
|
|
optimizer,
|
|
|
|
total_steps: int,
|
|
|
|
end_lr: float = 0.0001,
|
|
|
|
power: float = 1.0,
|
|
|
|
last_epoch: int = -1,
|
2021-10-28 16:21:23 +00:00
|
|
|
**kwargs):
|
|
|
|
if end_lr < 0:
|
|
|
|
raise ValueError(f'end_lr must >= 0, got {end_lr}')
|
|
|
|
self.total_steps = total_steps
|
|
|
|
self.end_lr = end_lr
|
|
|
|
self.power = power
|
|
|
|
super().__init__(optimizer, last_epoch=last_epoch)
|
|
|
|
|
|
|
|
def get_lr(self):
|
|
|
|
return self._get_closed_form_lr()
|
|
|
|
|
|
|
|
def _get_closed_form_lr(self):
|
2022-07-12 10:18:14 +00:00
|
|
|
return [(base_lr - self.end_lr) *
|
|
|
|
((1 - min(self.last_epoch, self.total_steps) / self.total_steps)**self.power) + self.end_lr
|
|
|
|
for base_lr in self.base_lrs]
|
2021-10-28 16:21:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
class PolynomialWarmupLR(WarmupScheduler):
|
|
|
|
"""Polynomial learning rate scheduler with warmup.
|
2022-01-21 02:44:30 +00:00
|
|
|
|
2022-03-25 05:02:39 +00:00
|
|
|
Args:
|
|
|
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
|
|
|
|
total_steps (int): Number of total training steps.
|
|
|
|
warmup_steps (int, optional): Number of warmup steps, defaults to 0.
|
|
|
|
end_lr (float, optional): Minimum learning rate, defaults to 0.0001.
|
|
|
|
power (float, optional): The power of polynomial, defaults to 1.0.
|
|
|
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
|
|
|
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
|
2021-10-28 16:21:23 +00:00
|
|
|
"""
|
|
|
|
|
2022-07-12 10:18:14 +00:00
|
|
|
def __init__(self,
|
|
|
|
optimizer,
|
|
|
|
total_steps: int,
|
|
|
|
warmup_steps: int = 0,
|
|
|
|
end_lr: float = 0.0001,
|
|
|
|
power: float = 1.0,
|
|
|
|
last_epoch: int = -1,
|
|
|
|
**kwargs):
|
|
|
|
base_scheduler = PolynomialLR(optimizer, total_steps - warmup_steps, end_lr=end_lr, power=power)
|
2021-10-28 16:21:23 +00:00
|
|
|
super().__init__(optimizer, warmup_steps, base_scheduler, last_epoch=last_epoch)
|