You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/lr_scheduler/poly.py

66 lines
2.4 KiB

3 years ago
from torch.optim.lr_scheduler import _LRScheduler
from colossalai.registry import LR_SCHEDULERS
from .delayed import WarmupScheduler
@LR_SCHEDULERS.register_module
class PolynomialLR(_LRScheduler):
"""Polynomial learning rate scheduler.
3 years ago
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
:param total_steps: Number of total training steps
3 years ago
:type total_steps: int
:param end_lr: Minimum learning rate, defaults to 0.0001
:type end_lr: float, optional
:param power: The power of polynomial, defaults to 1.0
3 years ago
:type power: float, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, total_steps: int, end_lr: float = 0.0001, power: float = 1.0, last_epoch: int = -1,
**kwargs):
if end_lr < 0:
raise ValueError(f'end_lr must >= 0, got {end_lr}')
self.total_steps = total_steps
self.end_lr = end_lr
self.power = power
super().__init__(optimizer, last_epoch=last_epoch)
def get_lr(self):
return self._get_closed_form_lr()
def _get_closed_form_lr(self):
return [
(base_lr - self.end_lr) * ((1 - min(self.last_epoch, self.total_steps) /
self.total_steps) ** self.power) + self.end_lr
for base_lr in self.base_lrs
]
@LR_SCHEDULERS.register_module
class PolynomialWarmupLR(WarmupScheduler):
"""Polynomial learning rate scheduler with warmup.
3 years ago
:param optimizer: Wrapped optimizer
:type optimizer: torch.optim.Optimizer
:param total_steps: Number of total training steps
3 years ago
:type total_steps: int
:param warmup_steps: Number of warmup steps, defaults to 0
3 years ago
:type warmup_steps: int, optional
:param end_lr: Minimum learning rate, defaults to 0.0001
:type end_lr: float, optional
:param power: The power of polynomial, defaults to 1.0
3 years ago
:type power: float, optional
:param last_epoch: The index of last epoch, defaults to -1
:type last_epoch: int, optional
"""
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, end_lr: float = 0.0001, power: float = 1.0,
last_epoch: int = -1, **kwargs):
base_scheduler = PolynomialLR(
optimizer, total_steps - warmup_steps, end_lr=end_lr, power=power)
super().__init__(optimizer, warmup_steps, base_scheduler, last_epoch=last_epoch)