|
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
|
|
|
|
from colossalai.registry import LR_SCHEDULERS
|
|
|
|
from .delayed import WarmupScheduler
|
|
|
|
|
|
|
|
|
|
|
|
@LR_SCHEDULERS.register_module
|
|
|
|
class PolynomialLR(_LRScheduler):
|
|
|
|
"""Polynomial learning rate scheduler.
|
|
|
|
|
|
|
|
:param optimizer: Wrapped optimizer
|
|
|
|
:type optimizer: torch.optim.Optimizer
|
|
|
|
:param total_steps: Number of total training steps
|
|
|
|
:type total_steps: int
|
|
|
|
:param end_lr: Minimum learning rate, defaults to 0.0001
|
|
|
|
:type end_lr: float, optional
|
|
|
|
:param power: The power of polynomial, defaults to 1.0
|
|
|
|
:type power: float, optional
|
|
|
|
:param last_epoch: The index of last epoch, defaults to -1
|
|
|
|
:type last_epoch: int, optional
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, optimizer, total_steps: int, end_lr: float = 0.0001, power: float = 1.0, last_epoch: int = -1,
|
|
|
|
**kwargs):
|
|
|
|
if end_lr < 0:
|
|
|
|
raise ValueError(f'end_lr must >= 0, got {end_lr}')
|
|
|
|
self.total_steps = total_steps
|
|
|
|
self.end_lr = end_lr
|
|
|
|
self.power = power
|
|
|
|
super().__init__(optimizer, last_epoch=last_epoch)
|
|
|
|
|
|
|
|
def get_lr(self):
|
|
|
|
return self._get_closed_form_lr()
|
|
|
|
|
|
|
|
def _get_closed_form_lr(self):
|
|
|
|
return [
|
|
|
|
(base_lr - self.end_lr) * ((1 - min(self.last_epoch, self.total_steps) /
|
|
|
|
self.total_steps) ** self.power) + self.end_lr
|
|
|
|
for base_lr in self.base_lrs
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@LR_SCHEDULERS.register_module
|
|
|
|
class PolynomialWarmupLR(WarmupScheduler):
|
|
|
|
"""Polynomial learning rate scheduler with warmup.
|
|
|
|
|
|
|
|
:param optimizer: Wrapped optimizer
|
|
|
|
:type optimizer: torch.optim.Optimizer
|
|
|
|
:param total_steps: Number of total training steps
|
|
|
|
:type total_steps: int
|
|
|
|
:param warmup_steps: Number of warmup steps, defaults to 0
|
|
|
|
:type warmup_steps: int, optional
|
|
|
|
:param end_lr: Minimum learning rate, defaults to 0.0001
|
|
|
|
:type end_lr: float, optional
|
|
|
|
:param power: The power of polynomial, defaults to 1.0
|
|
|
|
:type power: float, optional
|
|
|
|
:param last_epoch: The index of last epoch, defaults to -1
|
|
|
|
:type last_epoch: int, optional
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, optimizer, total_steps: int, warmup_steps: int = 0, end_lr: float = 0.0001, power: float = 1.0,
|
|
|
|
last_epoch: int = -1, **kwargs):
|
|
|
|
base_scheduler = PolynomialLR(
|
|
|
|
optimizer, total_steps - warmup_steps, end_lr=end_lr, power=power)
|
|
|
|
super().__init__(optimizer, warmup_steps, base_scheduler, last_epoch=last_epoch)
|