mirror of https://github.com/hpcaitech/ColossalAI
84 lines
3.2 KiB
Python
84 lines
3.2 KiB
Python
|
import torch
|
||
|
|
||
|
try:
|
||
|
import triton
|
||
|
import triton.language as tl
|
||
|
HAS_TRITON = True
|
||
|
except ImportError:
|
||
|
HAS_TRITON = False
|
||
|
print("please install triton from https://github.com/openai/triton")
|
||
|
|
||
|
if HAS_TRITON:
|
||
|
# CREDITS: These functions are adapted from the Triton tutorial
|
||
|
# https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
||
|
|
||
|
@triton.jit
|
||
|
def _layer_norm_fwd_fused(
|
||
|
X, # pointer to the input
|
||
|
Y, # pointer to the output
|
||
|
W, # pointer to the weights
|
||
|
B, # pointer to the biases
|
||
|
stride, # how much to increase the pointer when moving by 1 row
|
||
|
N, # number of columns in X
|
||
|
eps, # epsilon to avoid division by zero
|
||
|
BLOCK_SIZE: tl.constexpr,
|
||
|
):
|
||
|
# Map the program id to the row of X and Y it should compute.
|
||
|
row = tl.program_id(0)
|
||
|
Y += row * stride
|
||
|
X += row * stride
|
||
|
# Compute mean
|
||
|
mean = 0
|
||
|
_mean = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
|
||
|
for off in range(0, N, BLOCK_SIZE):
|
||
|
cols = off + tl.arange(0, BLOCK_SIZE)
|
||
|
a = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
|
||
|
_mean += a
|
||
|
mean = tl.sum(_mean, axis=0) / N
|
||
|
# Compute variance
|
||
|
_var = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
|
||
|
for off in range(0, N, BLOCK_SIZE):
|
||
|
cols = off + tl.arange(0, BLOCK_SIZE)
|
||
|
x = tl.load(X + cols, mask=cols < N, other=0.).to(tl.float32)
|
||
|
x = tl.where(cols < N, x - mean, 0.)
|
||
|
_var += x * x
|
||
|
var = tl.sum(_var, axis=0) / N
|
||
|
rstd = 1 / tl.sqrt(var + eps)
|
||
|
# Normalize and apply linear transformation
|
||
|
for off in range(0, N, BLOCK_SIZE):
|
||
|
cols = off + tl.arange(0, BLOCK_SIZE)
|
||
|
mask = cols < N
|
||
|
w = tl.load(W + cols, mask=mask)
|
||
|
b = tl.load(B + cols, mask=mask)
|
||
|
x = tl.load(X + cols, mask=mask, other=0.).to(tl.float32)
|
||
|
x_hat = (x - mean) * rstd
|
||
|
y = x_hat * w + b
|
||
|
# Write output
|
||
|
tl.store(Y + cols, y.to(tl.float16), mask=mask)
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def layer_norm(x, weight, bias, eps):
|
||
|
# allocate output
|
||
|
y = torch.empty_like(x)
|
||
|
# reshape input data into 2D tensor
|
||
|
x_arg = x.reshape(-1, x.shape[-1])
|
||
|
M, N = x_arg.shape
|
||
|
# Less than 64KB per feature: enqueue fused kernel
|
||
|
MAX_FUSED_SIZE = 65536 // x.element_size()
|
||
|
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
||
|
if N > BLOCK_SIZE:
|
||
|
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
||
|
# heuristics for number of warps
|
||
|
num_warps = min(max(BLOCK_SIZE // 256, 1), 8)
|
||
|
# enqueue kernel
|
||
|
_layer_norm_fwd_fused[(M,)](x_arg,
|
||
|
y,
|
||
|
weight,
|
||
|
bias,
|
||
|
x_arg.stride(0),
|
||
|
N,
|
||
|
eps,
|
||
|
BLOCK_SIZE=BLOCK_SIZE,
|
||
|
num_warps=num_warps)
|
||
|
return y
|