ColossalAI/colossalai/nn/parallel/layers/cache_embedding/cache_mgr.py

442 lines
19 KiB
Python
Raw Normal View History

import numpy as np
import torch
from torch.profiler import record_function
from typing import List, Optional
from contexttimer import Timer
from .copyer import LimitBuffIndexCopyer
from enum import Enum
class EvictionStrategy(Enum):
LFU = 1
DATASET = 2
class CachedParamMgr(torch.nn.Module):
"""
Manage Embedding Weights in Cache on CPU and CUDA memory.
CPU maintains entire original weight.
CUDA maintains a fraction of weights used in the upcomming computation.
During training, GPU needs to transmit rows between CPU and GPU.
"""
def __init__(self,
weight: torch.Tensor,
cuda_row_num: int = 0,
buffer_size: int = 50_000,
pin_weight=False,
evict_strategy=EvictionStrategy.DATASET) -> None:
super(CachedParamMgr, self).__init__()
self.buffer_size = buffer_size
self.num_embeddings, self.embedding_dim = weight.shape
self.cuda_row_num = cuda_row_num
self._cuda_available_row_num = self.cuda_row_num
self.pin_weight = pin_weight
self.elem_size_in_byte = weight.element_size()
# weight configure
self._init_weight(weight)
# Perf log
self.num_hits_history = []
self.num_miss_history = []
self.num_write_back_history = []
self.input_id_percent_in_load_chunk = []
self._reset_comm_stats()
self._evict_strategy = evict_strategy
if self._evict_strategy == EvictionStrategy.LFU:
# cpu_row_idx -> frequency, freq of the cpu rows.
# evict the minimal freq value row in cuda cache.
self.register_buffer("freq_cnter",
torch.empty(self.num_embeddings, device=torch.cuda.current_device(),
dtype=torch.long).fill_(0),
persistent=False)
def _update_freq_cnter(self, cpu_row_idxs: torch.Tensor) -> None:
"""_update_freq_cnter
Update the frequency valude w.r.t. the cpu_row_ids in self.freq_cnter.
2022-08-25 05:08:46 +00:00
Args:
cpu_row_idxs (torch.Tensor): a list of indices of cpu weight.
"""
if self._evict_strategy == EvictionStrategy.LFU:
self.freq_cnter[cpu_row_idxs] += 1
def _find_evict_gpu_idxs(self, evict_num: int) -> torch.Tensor:
"""_find_evict_gpu_idxs
Find the gpu idxs to be evicted, according to their freq.
Args:
evict_num (int): how many rows has to be evicted
Returns:
torch.Tensor: a list tensor (1D), contains the gpu_row_idxs.
"""
if self._evict_strategy == EvictionStrategy.LFU:
# find the minimal evict_num freq entries in cached_idx_map
evict_gpu_row_idxs = torch.argsort(self.freq_cnter[self.cached_idx_map])[:evict_num]
2022-08-25 05:08:46 +00:00
return evict_gpu_row_idxs
elif self._evict_strategy == EvictionStrategy.DATASET:
# cached_idx_map itself implies the priority of eviction.
# The value of self.cached_idx_map represents cpu_row_idx.
# The larger it is, the less frequently it will appear in the dataset,
# and the higher its eviction priority will be.
return torch.argsort(self.cached_idx_map, descending=True)[:evict_num]
else:
raise TypeError
def _init_weight(self, weight):
if self.cuda_row_num > 0:
# Enable cache with introducing auxiliary data structures
self.cuda_cached_weight = torch.nn.Parameter(
torch.zeros(self.cuda_row_num,
self.embedding_dim,
device=torch.cuda.current_device(),
dtype=weight.dtype))
# pin memory cpu for higher CPU-GPU copy bandwidth
self.weight = weight.pin_memory() if self.pin_weight else weight
# map original id to new id with respect to frequency
# id -> cpu_row_idx
self.register_buffer(
"idx_map",
torch.arange(self.num_embeddings, dtype=torch.long, device=torch.cuda.current_device()),
persistent=False,
)
# cached_idx_map: gpu_row_idx -> cpu_row_idx
self.register_buffer("cached_idx_map",
torch.empty(self.cuda_row_num, device=torch.cuda.current_device(),
dtype=torch.long).fill_(-1),
persistent=False)
# cpu_row_id -> gpu_row_idx.
# gpu_row_idx as -1 means cpu_row_id not in CUDA.
self.register_buffer("inverted_cached_idx",
torch.zeros(self.num_embeddings, device=torch.cuda.current_device(),
dtype=torch.long).fill_(-1),
persistent=False)
self.evict_backlist = torch.tensor([], device=torch.cuda.current_device())
# index copy buffer size should less than 10% of cuda weight.
if self.buffer_size > 0:
self.limit_buff_index_copyer = LimitBuffIndexCopyer(self.buffer_size)
else:
# Disable cache so that FreqCacheEmbedding is compatible with vanilla EmbeddingBag
# self.weight = torch.nn.Parameter(weight)
# self.cuda_cached_weight = self.weight
raise NotImplementedError()
def cpu_weight_data(self, chunk_id: int) -> torch.Tensor:
"""
access a chunk of CPU weight.
Args:
chunk_id (int): chunk id
Returns:
torch.Tensor: a piece of memory in CPU weight corresponding to chunk id's payload. The tensor is 1-D.
"""
return self.weight.data.view(-1).narrow(0,
int(chunk_id) * self.embedding_dim,
self.embedding_dim).view(1, self.embedding_dim)
@property
def cuda_available_chunk_num(self):
return self._cuda_available_row_num
@torch.no_grad()
def reorder(self, ids_freq_mapping: Optional[List[int]] = None, warmup_ratio=0.7):
"""reorder
reorder the weight according to ids' frequency in dataset before training.
Also Build the IndexMappingTable, aka index_mapping_table.
Execute only once before training.
Args:
ids_freq_mapping (List[int]): a list, idx is id number, value is freq. if None no reorder
warmup_ratio (float): the amount of chunks preloaded in cuda cache
"""
if ids_freq_mapping is not None:
tmp_idx = torch.argsort(ids_freq_mapping, descending=True)
sorted_idx = torch.argsort(tmp_idx)
self.idx_map.data.copy_(sorted_idx)
# TODO() The following code will allocate extra CUDA memory. preload_row_num * chunks.
# As cuda_cached_weight is very big. You may not have that much available memory!
# Warmup the cuda cache by moving high freq chunks (lowest chunk id) to cuda
preload_row_num = min(int(np.ceil(self.cuda_row_num * warmup_ratio)), self.num_embeddings)
if preload_row_num > 0:
with Timer() as timer:
# extract chunks from cpu weight
preload_row_ids = torch.arange(preload_row_num)
preload_slot_ids = preload_row_ids.cuda()
if self.buffer_size > 0:
self.limit_buff_index_copyer.index_copy(0,
src_index=preload_row_ids,
tgt_index=preload_slot_ids,
src=self.weight.view(self.num_embeddings, -1),
tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1))
else:
preload_chunks = self.weight.view(self.num_embeddings, -1).index_select(0, preload_row_ids).cuda()
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, preload_slot_ids, preload_chunks)
# update auxiliary info
slot_offsets = preload_slot_ids
self.cached_idx_map[preload_slot_ids] = preload_slot_ids
self.inverted_cached_idx[preload_slot_ids] = slot_offsets
self._cuda_available_row_num -= preload_row_num
print(f'Cache warmup finished cost {timer.elapsed} sec.')
def flush(self):
"""flush all CUDA chunks to CPU.
The function is usually called after training finished.
"""
slots = torch.nonzero(self.cached_idx_map > -1).squeeze(1)
chunk_ids = self.cached_idx_map[slots]
chunks = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, slots).cpu()
self.weight.view(self.num_embeddings, -1).index_copy_(0, chunk_ids.cpu(), chunks)
self.cached_idx_map.index_fill_(0, slots, -1)
self.inverted_cached_idx.index_fill_(0, chunk_ids, -1)
self._cuda_available_row_num += slots.numel()
assert self._cuda_available_row_num == self.cuda_row_num
assert torch.all(self.inverted_cached_idx == -1).item()
assert torch.all(self.cached_idx_map == -1).item()
def print_comm_stats(self):
if self._cuda_to_cpu_numel > 0:
print(
f"CUDA->CPU BWD {self._cuda_to_cpu_numel * self.elem_size_in_byte / 1e6 / self._cuda_to_cpu_elapse} MB/s {self._cuda_to_cpu_numel / 1e6} M elem"
)
if self._cpu_to_cuda_numel > 0:
print(
f"CPU->CUDA BWD {self._cpu_to_cuda_numel * self.elem_size_in_byte / 1e6 / self._cpu_to_cuda_elpase} MB/s {self._cpu_to_cuda_numel / 1e6} M elem"
)
@torch.no_grad()
def _id_to_cached_cuda_id(self, ids: torch.Tensor) -> torch.Tensor:
"""
convert ids to indices in self.cuda_cached_weight.
Implemented with parallel operations on GPU.
Args:
ids (torch.Tensor): ids from the dataset
Returns:
torch.Tensor: contains indices in self.cuda_cached_weight
"""
ids = self.idx_map.index_select(0, ids.view(-1))
ret = self.inverted_cached_idx.index_select(0, ids)
return ret
@torch.no_grad()
def prepare_ids(self, ids: torch.Tensor) -> torch.Tensor:
"""
move the cpu embedding rows w.r.t. ids into CUDA memory
Args:
ids (torch.Tensor): the ids to be computed
Returns:
torch.Tensor: indices on the cuda_cached_weight.
"""
with record_function("(zhg) get unique indices"):
cpu_row_idxs = torch.unique(self.idx_map.index_select(0, ids))
assert len(cpu_row_idxs) <= self.cuda_row_num, \
f"the input indices pull {len(cpu_row_idxs)} chunks, " \
f"which is larger than the presented {self.cuda_row_num}, " \
f"please increase cuda_row_num shrink batch size"
self.evict_backlist = cpu_row_idxs
with record_function("(zhg) get cpu chunk indices"):
comm_cpu_row_idxs = cpu_row_idxs[torch.isin(cpu_row_idxs, self.cached_idx_map, invert=True)]
self.num_hits_history.append(len(cpu_row_idxs) - len(comm_cpu_row_idxs))
self.num_miss_history.append(len(comm_cpu_row_idxs))
self.num_write_back_history.append(0)
# move sure the cuda chunk will not be evicted!
with record_function("(zhg) cache update"):
self._prepare_rows_on_cuda(comm_cpu_row_idxs)
self.evict_backlist = torch.tensor([], device=cpu_row_idxs.device, dtype=cpu_row_idxs.dtype)
# new ids chunk_offset + offset_in_chunk
with record_function("(zhg) embed idx -> cache chunk id"):
gpu_row_idxs = self._id_to_cached_cuda_id(ids)
# update for LFU.
self._update_freq_cnter(cpu_row_idxs)
return gpu_row_idxs
def _reset_comm_stats(self):
self._cpu_to_cuda_numel = 0
self._cpu_to_cuda_elpase = 0
self._cuda_to_cpu_elapse = 0
self._cuda_to_cpu_numel = 0
def _chunk_in_cuda(self, chunk_id: int) -> bool:
return self.inverted_cached_idx[chunk_id] != -1
@torch.no_grad()
def _prepare_rows_on_cuda(self, cpu_row_idxs: torch.Tensor) -> None:
"""prepare rows in cpu_row_idxs on CUDA memory
Args:
cpu_row_idxs (torch.Tensor): the chunks to be placed on CUDA
"""
evict_num = cpu_row_idxs.numel() - self.cuda_available_chunk_num
if evict_num > 0:
with Timer() as timer:
mask_cpu_row_idx = torch.isin(self.cached_idx_map, self.evict_backlist)
2022-08-25 05:08:46 +00:00
invalid_idxs = torch.nonzero(mask_cpu_row_idx).squeeze(1)
2022-08-25 05:08:46 +00:00
if self._evict_strategy == EvictionStrategy.DATASET:
# mask method.
# set cached_idx_map[invalid_idxs] to -2.
# so those idxs will be sorted to end, therefore not being chosen as victim
backup_idxs = self.cached_idx_map[mask_cpu_row_idx].clone()
self.cached_idx_map.index_fill_(0, invalid_idxs, -2)
evict_gpu_row_idxs = self._find_evict_gpu_idxs(evict_num)
self.cached_idx_map.index_copy_(0, invalid_idxs, backup_idxs)
elif self._evict_strategy == EvictionStrategy.LFU:
# another mask method.
# set freq_cnter[invalid_idxs] to max
# so those idxs will be sorted to end, therefore not being chosen as victim
backup_cnter = self.freq_cnter[invalid_idxs].clone()
self.freq_cnter.index_fill_(0, invalid_idxs, torch.max(self.freq_cnter) + 1) # or can we use a confident max value?
evict_gpu_row_idxs = self._find_evict_gpu_idxs(evict_num)
self.freq_cnter.index_copy_(0,invalid_idxs,backup_cnter)
evict_info = self.cached_idx_map[evict_gpu_row_idxs]
if self.buffer_size > 0:
self.limit_buff_index_copyer.index_copy(0,
src_index=evict_gpu_row_idxs,
tgt_index=evict_info.cpu(),
src=self.cuda_cached_weight.view(self.cuda_row_num, -1),
tgt=self.weight.view(self.num_embeddings, -1))
else:
# allocate tmp memory on CPU and copy rows on CUDA to CPU.
rows = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, evict_gpu_row_idxs).cpu()
self.weight.view(self.num_embeddings, -1).index_copy_(0, evict_info.cpu(), rows)
self.cached_idx_map.index_fill_(0, evict_gpu_row_idxs, -1)
self.inverted_cached_idx.index_fill_(0, evict_info, -1)
self._cuda_available_row_num += evict_num
weight_size = evict_gpu_row_idxs.numel() * self.embedding_dim
self._cuda_to_cpu_elapse += timer.elapsed
self._cuda_to_cpu_numel += weight_size
# print(f"evict embedding weight: {weight_size*self.elem_size_in_byte/1e6:.2f} MB")
with Timer() as timer:
slots = torch.nonzero(self.cached_idx_map == -1).squeeze(1)[:cpu_row_idxs.numel()]
# Here also allocate extra memory on CUDA. #cpu_row_idxs
if self.buffer_size > 0:
self.limit_buff_index_copyer.index_copy(0,
src_index=cpu_row_idxs.cpu(),
tgt_index=slots,
src=self.weight.view(self.num_embeddings, -1),
tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1))
else:
rows = self.weight.view(self.num_embeddings, -1).index_select(0, cpu_row_idxs.cpu()).cuda()
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, slots, rows)
slot_offsets = slots
self.cached_idx_map[slots] = cpu_row_idxs
self.inverted_cached_idx.index_copy_(0, cpu_row_idxs, slot_offsets)
self._cuda_available_row_num -= cpu_row_idxs.numel()
self._cpu_to_cuda_elpase += timer.elapsed
weight_size = cpu_row_idxs.numel() * self.embedding_dim
self._cpu_to_cuda_numel += weight_size
# print(f"admit embedding weight: {weight_size*self.elem_size_in_byte/1e6:.2f} MB")
def _find_free_cuda_row(self) -> int:
if self._cuda_available_row_num == 0:
return -1
candidates = torch.nonzero(self.cached_idx_map == -1).squeeze(1)
return candidates[0].item()
def _evict(self) -> int:
"""
deprecated
evict one chunk from cuda to cpu.
Returns:
(int) : the slot id be evicted.
"""
mask = torch.logical_or(torch.isin(self.cached_idx_map, self.evict_backlist), self.cached_idx_map == -1)
buf = self.cached_idx_map[mask].clone()
idx = torch.nonzero(mask).squeeze(1)
self.cached_idx_map.index_fill_(0, idx, -1)
max_row, max_cpu_row_idx = torch.max(self.cached_idx_map, dim=0)
max_gpu_row_idx = self.cached_idx_map[max_cpu_row_idx]
if max_gpu_row_idx == -1:
raise RuntimeError("Can not evict a row")
max_gpu_row_idx = max_gpu_row_idx.item()
max_offset = self.inverted_cached_idx[max_gpu_row_idx]
# recover
self.cached_idx_map.index_copy_(0, idx, buf)
with Timer() as timer:
cuda_tensor = torch.narrow(self.cuda_cached_weight.view(-1), 0, max_offset * self.embedding_dim,
self.embedding_dim).view(1, self.embedding_dim)
self.cpu_weight_data(max_gpu_row_idx).data.copy_(cuda_tensor)
# update inverted_cached_idx, min_slot_id is evicted from cuda
self.cached_idx_map[max_cpu_row_idx] = -1
self.inverted_cached_idx[max_gpu_row_idx] = -1
self._cuda_available_row_num += 1
self._cuda_to_cpu_numel += self.embedding_dim
self._cuda_to_cpu_elapse += timer.elapsed
# self.num_write_back_history[-1] += 1
return max_cpu_row_idx
@torch.no_grad()
def _admit(self, row_id: int):
"""
deprecated
move in row_id to CUDA
Args:
row_id (int): the id of row to be moved in
"""
# find a free slot in partial cuda weight
slot_id = self._find_free_cuda_row()
if slot_id == -1:
# evict one row
slot_id = self._evict()
slot_offset = slot_id
# copy payload from cpu to cuda
with Timer() as timer:
cuda_tensor = torch.narrow(self.cuda_cached_weight.view(-1), 0, slot_offset * self.embedding_dim,
self.embedding_dim).view(1, self.embedding_dim)
cuda_tensor.data.copy_(self.cpu_weight_data(row_id))
# update the inverted_cached_idx
self.cached_idx_map[slot_id] = row_id
self.inverted_cached_idx[row_id] = slot_offset
self._cuda_available_row_num -= 1
self._cpu_to_cuda_numel += self.embedding_dim
self._cpu_to_cuda_elpase += timer.elapsed