2022-08-09 07:17:17 +00:00
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
from torch.profiler import record_function
|
|
|
|
from typing import List, Optional
|
|
|
|
from contexttimer import Timer
|
|
|
|
from .copyer import LimitBuffIndexCopyer
|
2022-08-24 09:37:22 +00:00
|
|
|
from enum import Enum
|
|
|
|
|
|
|
|
|
|
|
|
class EvictionStrategy(Enum):
|
|
|
|
LFU = 1
|
|
|
|
DATASET = 2
|
2022-08-09 07:17:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
class CachedParamMgr(torch.nn.Module):
|
|
|
|
"""
|
|
|
|
Manage Embedding Weights in Cache on CPU and CUDA memory.
|
|
|
|
CPU maintains entire original weight.
|
|
|
|
CUDA maintains a fraction of weights used in the upcomming computation.
|
|
|
|
During training, GPU needs to transmit rows between CPU and GPU.
|
|
|
|
"""
|
|
|
|
|
2022-08-23 09:38:24 +00:00
|
|
|
def __init__(self,
|
|
|
|
weight: torch.Tensor,
|
|
|
|
cuda_row_num: int = 0,
|
|
|
|
buffer_size: int = 50_000,
|
2022-08-24 09:37:22 +00:00
|
|
|
pin_weight=False,
|
|
|
|
evict_strategy=EvictionStrategy.DATASET) -> None:
|
2022-08-09 07:17:17 +00:00
|
|
|
super(CachedParamMgr, self).__init__()
|
|
|
|
self.buffer_size = buffer_size
|
|
|
|
self.num_embeddings, self.embedding_dim = weight.shape
|
|
|
|
self.cuda_row_num = cuda_row_num
|
|
|
|
self._cuda_available_row_num = self.cuda_row_num
|
2022-08-23 09:38:24 +00:00
|
|
|
self.pin_weight = pin_weight
|
2022-08-09 07:17:17 +00:00
|
|
|
|
|
|
|
self.elem_size_in_byte = weight.element_size()
|
|
|
|
|
2022-08-12 07:55:46 +00:00
|
|
|
# weight configure
|
|
|
|
self._init_weight(weight)
|
2022-08-09 07:17:17 +00:00
|
|
|
|
2022-08-12 07:55:46 +00:00
|
|
|
# Perf log
|
2022-08-09 07:17:17 +00:00
|
|
|
self.num_hits_history = []
|
|
|
|
self.num_miss_history = []
|
|
|
|
self.num_write_back_history = []
|
|
|
|
self.input_id_percent_in_load_chunk = []
|
|
|
|
self._reset_comm_stats()
|
|
|
|
|
2022-08-24 09:37:22 +00:00
|
|
|
self._evict_strategy = evict_strategy
|
|
|
|
|
|
|
|
if self._evict_strategy == EvictionStrategy.LFU:
|
|
|
|
# cpu_row_idx -> frequency, freq of the cpu rows.
|
|
|
|
# evict the minimal freq value row in cuda cache.
|
|
|
|
self.register_buffer("freq_cnter",
|
|
|
|
torch.empty(self.num_embeddings, device=torch.cuda.current_device(),
|
|
|
|
dtype=torch.long).fill_(0),
|
|
|
|
persistent=False)
|
|
|
|
|
|
|
|
def _update_freq_cnter(self, cpu_row_idxs: torch.Tensor) -> None:
|
|
|
|
"""_update_freq_cnter
|
|
|
|
|
|
|
|
Update the frequency valude w.r.t. the cpu_row_ids in self.freq_cnter.
|
2022-08-25 05:08:46 +00:00
|
|
|
|
2022-08-24 09:37:22 +00:00
|
|
|
Args:
|
|
|
|
cpu_row_idxs (torch.Tensor): a list of indices of cpu weight.
|
|
|
|
"""
|
|
|
|
if self._evict_strategy == EvictionStrategy.LFU:
|
|
|
|
self.freq_cnter[cpu_row_idxs] += 1
|
|
|
|
|
|
|
|
def _find_evict_gpu_idxs(self, evict_num: int) -> torch.Tensor:
|
|
|
|
"""_find_evict_gpu_idxs
|
|
|
|
|
|
|
|
Find the gpu idxs to be evicted, according to their freq.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
evict_num (int): how many rows has to be evicted
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: a list tensor (1D), contains the gpu_row_idxs.
|
|
|
|
"""
|
|
|
|
if self._evict_strategy == EvictionStrategy.LFU:
|
|
|
|
# find the minimal evict_num freq entries in cached_idx_map
|
|
|
|
evict_gpu_row_idxs = torch.argsort(self.freq_cnter[self.cached_idx_map])[:evict_num]
|
2022-08-25 05:08:46 +00:00
|
|
|
return evict_gpu_row_idxs
|
2022-08-24 09:37:22 +00:00
|
|
|
elif self._evict_strategy == EvictionStrategy.DATASET:
|
|
|
|
# cached_idx_map itself implies the priority of eviction.
|
|
|
|
# The value of self.cached_idx_map represents cpu_row_idx.
|
|
|
|
# The larger it is, the less frequently it will appear in the dataset,
|
|
|
|
# and the higher its eviction priority will be.
|
|
|
|
return torch.argsort(self.cached_idx_map, descending=True)[:evict_num]
|
|
|
|
else:
|
|
|
|
raise TypeError
|
|
|
|
|
2022-08-12 07:55:46 +00:00
|
|
|
def _init_weight(self, weight):
|
|
|
|
if self.cuda_row_num > 0:
|
|
|
|
# Enable cache with introducing auxiliary data structures
|
|
|
|
self.cuda_cached_weight = torch.nn.Parameter(
|
|
|
|
torch.zeros(self.cuda_row_num,
|
|
|
|
self.embedding_dim,
|
|
|
|
device=torch.cuda.current_device(),
|
|
|
|
dtype=weight.dtype))
|
|
|
|
|
|
|
|
# pin memory cpu for higher CPU-GPU copy bandwidth
|
2022-08-23 09:38:24 +00:00
|
|
|
self.weight = weight.pin_memory() if self.pin_weight else weight
|
2022-08-12 07:55:46 +00:00
|
|
|
# map original id to new id with respect to frequency
|
|
|
|
# id -> cpu_row_idx
|
|
|
|
self.register_buffer(
|
|
|
|
"idx_map",
|
|
|
|
torch.arange(self.num_embeddings, dtype=torch.long, device=torch.cuda.current_device()),
|
|
|
|
persistent=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
# cached_idx_map: gpu_row_idx -> cpu_row_idx
|
|
|
|
self.register_buffer("cached_idx_map",
|
|
|
|
torch.empty(self.cuda_row_num, device=torch.cuda.current_device(),
|
|
|
|
dtype=torch.long).fill_(-1),
|
|
|
|
persistent=False)
|
|
|
|
|
|
|
|
# cpu_row_id -> gpu_row_idx.
|
|
|
|
# gpu_row_idx as -1 means cpu_row_id not in CUDA.
|
|
|
|
self.register_buffer("inverted_cached_idx",
|
|
|
|
torch.zeros(self.num_embeddings, device=torch.cuda.current_device(),
|
|
|
|
dtype=torch.long).fill_(-1),
|
|
|
|
persistent=False)
|
|
|
|
|
|
|
|
self.evict_backlist = torch.tensor([], device=torch.cuda.current_device())
|
|
|
|
|
|
|
|
# index copy buffer size should less than 10% of cuda weight.
|
|
|
|
if self.buffer_size > 0:
|
|
|
|
self.limit_buff_index_copyer = LimitBuffIndexCopyer(self.buffer_size)
|
|
|
|
|
|
|
|
else:
|
|
|
|
# Disable cache so that FreqCacheEmbedding is compatible with vanilla EmbeddingBag
|
|
|
|
# self.weight = torch.nn.Parameter(weight)
|
|
|
|
# self.cuda_cached_weight = self.weight
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
2022-08-09 07:17:17 +00:00
|
|
|
def cpu_weight_data(self, chunk_id: int) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
access a chunk of CPU weight.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
chunk_id (int): chunk id
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: a piece of memory in CPU weight corresponding to chunk id's payload. The tensor is 1-D.
|
|
|
|
"""
|
|
|
|
|
2022-08-12 07:55:46 +00:00
|
|
|
return self.weight.data.view(-1).narrow(0,
|
|
|
|
int(chunk_id) * self.embedding_dim,
|
|
|
|
self.embedding_dim).view(1, self.embedding_dim)
|
2022-08-09 07:17:17 +00:00
|
|
|
|
|
|
|
@property
|
|
|
|
def cuda_available_chunk_num(self):
|
|
|
|
return self._cuda_available_row_num
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def reorder(self, ids_freq_mapping: Optional[List[int]] = None, warmup_ratio=0.7):
|
2022-08-16 01:21:05 +00:00
|
|
|
"""reorder
|
|
|
|
reorder the weight according to ids' frequency in dataset before training.
|
2022-08-09 07:17:17 +00:00
|
|
|
Also Build the IndexMappingTable, aka index_mapping_table.
|
|
|
|
Execute only once before training.
|
2022-08-16 01:21:05 +00:00
|
|
|
|
2022-08-09 07:17:17 +00:00
|
|
|
Args:
|
|
|
|
ids_freq_mapping (List[int]): a list, idx is id number, value is freq. if None no reorder
|
|
|
|
warmup_ratio (float): the amount of chunks preloaded in cuda cache
|
|
|
|
"""
|
|
|
|
if ids_freq_mapping is not None:
|
2022-08-23 09:38:24 +00:00
|
|
|
tmp_idx = torch.argsort(ids_freq_mapping, descending=True)
|
2022-08-09 07:17:17 +00:00
|
|
|
sorted_idx = torch.argsort(tmp_idx)
|
|
|
|
self.idx_map.data.copy_(sorted_idx)
|
|
|
|
|
|
|
|
# TODO() The following code will allocate extra CUDA memory. preload_row_num * chunks.
|
|
|
|
# As cuda_cached_weight is very big. You may not have that much available memory!
|
|
|
|
# Warmup the cuda cache by moving high freq chunks (lowest chunk id) to cuda
|
|
|
|
preload_row_num = min(int(np.ceil(self.cuda_row_num * warmup_ratio)), self.num_embeddings)
|
|
|
|
if preload_row_num > 0:
|
|
|
|
with Timer() as timer:
|
|
|
|
# extract chunks from cpu weight
|
|
|
|
preload_row_ids = torch.arange(preload_row_num)
|
|
|
|
preload_slot_ids = preload_row_ids.cuda()
|
|
|
|
|
|
|
|
if self.buffer_size > 0:
|
|
|
|
self.limit_buff_index_copyer.index_copy(0,
|
|
|
|
src_index=preload_row_ids,
|
|
|
|
tgt_index=preload_slot_ids,
|
2022-08-12 07:55:46 +00:00
|
|
|
src=self.weight.view(self.num_embeddings, -1),
|
2022-08-09 07:17:17 +00:00
|
|
|
tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1))
|
|
|
|
else:
|
2022-08-12 07:55:46 +00:00
|
|
|
preload_chunks = self.weight.view(self.num_embeddings, -1).index_select(0, preload_row_ids).cuda()
|
2022-08-09 07:17:17 +00:00
|
|
|
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, preload_slot_ids, preload_chunks)
|
|
|
|
|
|
|
|
# update auxiliary info
|
|
|
|
slot_offsets = preload_slot_ids
|
|
|
|
self.cached_idx_map[preload_slot_ids] = preload_slot_ids
|
|
|
|
self.inverted_cached_idx[preload_slot_ids] = slot_offsets
|
|
|
|
self._cuda_available_row_num -= preload_row_num
|
|
|
|
print(f'Cache warmup finished cost {timer.elapsed} sec.')
|
|
|
|
|
|
|
|
def flush(self):
|
|
|
|
"""flush all CUDA chunks to CPU.
|
|
|
|
The function is usually called after training finished.
|
|
|
|
"""
|
|
|
|
slots = torch.nonzero(self.cached_idx_map > -1).squeeze(1)
|
|
|
|
chunk_ids = self.cached_idx_map[slots]
|
|
|
|
chunks = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, slots).cpu()
|
2022-08-12 07:55:46 +00:00
|
|
|
self.weight.view(self.num_embeddings, -1).index_copy_(0, chunk_ids.cpu(), chunks)
|
2022-08-09 07:17:17 +00:00
|
|
|
self.cached_idx_map.index_fill_(0, slots, -1)
|
|
|
|
self.inverted_cached_idx.index_fill_(0, chunk_ids, -1)
|
|
|
|
self._cuda_available_row_num += slots.numel()
|
|
|
|
|
|
|
|
assert self._cuda_available_row_num == self.cuda_row_num
|
|
|
|
assert torch.all(self.inverted_cached_idx == -1).item()
|
|
|
|
assert torch.all(self.cached_idx_map == -1).item()
|
|
|
|
|
|
|
|
def print_comm_stats(self):
|
|
|
|
if self._cuda_to_cpu_numel > 0:
|
|
|
|
print(
|
|
|
|
f"CUDA->CPU BWD {self._cuda_to_cpu_numel * self.elem_size_in_byte / 1e6 / self._cuda_to_cpu_elapse} MB/s {self._cuda_to_cpu_numel / 1e6} M elem"
|
|
|
|
)
|
|
|
|
if self._cpu_to_cuda_numel > 0:
|
|
|
|
print(
|
|
|
|
f"CPU->CUDA BWD {self._cpu_to_cuda_numel * self.elem_size_in_byte / 1e6 / self._cpu_to_cuda_elpase} MB/s {self._cpu_to_cuda_numel / 1e6} M elem"
|
|
|
|
)
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def _id_to_cached_cuda_id(self, ids: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
convert ids to indices in self.cuda_cached_weight.
|
|
|
|
Implemented with parallel operations on GPU.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
ids (torch.Tensor): ids from the dataset
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: contains indices in self.cuda_cached_weight
|
|
|
|
"""
|
|
|
|
ids = self.idx_map.index_select(0, ids.view(-1))
|
|
|
|
ret = self.inverted_cached_idx.index_select(0, ids)
|
|
|
|
return ret
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def prepare_ids(self, ids: torch.Tensor) -> torch.Tensor:
|
|
|
|
"""
|
|
|
|
move the cpu embedding rows w.r.t. ids into CUDA memory
|
|
|
|
|
|
|
|
Args:
|
|
|
|
ids (torch.Tensor): the ids to be computed
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: indices on the cuda_cached_weight.
|
|
|
|
"""
|
|
|
|
with record_function("(zhg) get unique indices"):
|
|
|
|
cpu_row_idxs = torch.unique(self.idx_map.index_select(0, ids))
|
|
|
|
|
|
|
|
assert len(cpu_row_idxs) <= self.cuda_row_num, \
|
|
|
|
f"the input indices pull {len(cpu_row_idxs)} chunks, " \
|
|
|
|
f"which is larger than the presented {self.cuda_row_num}, " \
|
|
|
|
f"please increase cuda_row_num shrink batch size"
|
|
|
|
self.evict_backlist = cpu_row_idxs
|
|
|
|
|
|
|
|
with record_function("(zhg) get cpu chunk indices"):
|
|
|
|
comm_cpu_row_idxs = cpu_row_idxs[torch.isin(cpu_row_idxs, self.cached_idx_map, invert=True)]
|
|
|
|
|
|
|
|
self.num_hits_history.append(len(cpu_row_idxs) - len(comm_cpu_row_idxs))
|
|
|
|
self.num_miss_history.append(len(comm_cpu_row_idxs))
|
|
|
|
self.num_write_back_history.append(0)
|
|
|
|
|
|
|
|
# move sure the cuda chunk will not be evicted!
|
|
|
|
with record_function("(zhg) cache update"):
|
|
|
|
self._prepare_rows_on_cuda(comm_cpu_row_idxs)
|
|
|
|
|
|
|
|
self.evict_backlist = torch.tensor([], device=cpu_row_idxs.device, dtype=cpu_row_idxs.dtype)
|
|
|
|
# new ids chunk_offset + offset_in_chunk
|
|
|
|
with record_function("(zhg) embed idx -> cache chunk id"):
|
|
|
|
gpu_row_idxs = self._id_to_cached_cuda_id(ids)
|
2022-08-24 09:37:22 +00:00
|
|
|
|
|
|
|
# update for LFU.
|
|
|
|
self._update_freq_cnter(cpu_row_idxs)
|
|
|
|
|
2022-08-09 07:17:17 +00:00
|
|
|
return gpu_row_idxs
|
|
|
|
|
|
|
|
def _reset_comm_stats(self):
|
|
|
|
self._cpu_to_cuda_numel = 0
|
|
|
|
self._cpu_to_cuda_elpase = 0
|
|
|
|
self._cuda_to_cpu_elapse = 0
|
|
|
|
self._cuda_to_cpu_numel = 0
|
|
|
|
|
|
|
|
def _chunk_in_cuda(self, chunk_id: int) -> bool:
|
|
|
|
return self.inverted_cached_idx[chunk_id] != -1
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def _prepare_rows_on_cuda(self, cpu_row_idxs: torch.Tensor) -> None:
|
|
|
|
"""prepare rows in cpu_row_idxs on CUDA memory
|
2022-08-24 09:37:22 +00:00
|
|
|
|
2022-08-09 07:17:17 +00:00
|
|
|
Args:
|
|
|
|
cpu_row_idxs (torch.Tensor): the chunks to be placed on CUDA
|
|
|
|
"""
|
|
|
|
evict_num = cpu_row_idxs.numel() - self.cuda_available_chunk_num
|
|
|
|
if evict_num > 0:
|
|
|
|
with Timer() as timer:
|
|
|
|
mask_cpu_row_idx = torch.isin(self.cached_idx_map, self.evict_backlist)
|
2022-08-25 05:08:46 +00:00
|
|
|
|
2022-08-09 07:17:17 +00:00
|
|
|
invalid_idxs = torch.nonzero(mask_cpu_row_idx).squeeze(1)
|
|
|
|
|
2022-08-25 05:08:46 +00:00
|
|
|
if self._evict_strategy == EvictionStrategy.DATASET:
|
|
|
|
# mask method.
|
|
|
|
# set cached_idx_map[invalid_idxs] to -2.
|
|
|
|
# so those idxs will be sorted to end, therefore not being chosen as victim
|
|
|
|
backup_idxs = self.cached_idx_map[mask_cpu_row_idx].clone()
|
|
|
|
self.cached_idx_map.index_fill_(0, invalid_idxs, -2)
|
|
|
|
evict_gpu_row_idxs = self._find_evict_gpu_idxs(evict_num)
|
|
|
|
self.cached_idx_map.index_copy_(0, invalid_idxs, backup_idxs)
|
|
|
|
|
|
|
|
elif self._evict_strategy == EvictionStrategy.LFU:
|
|
|
|
# another mask method.
|
|
|
|
# set freq_cnter[invalid_idxs] to max
|
|
|
|
# so those idxs will be sorted to end, therefore not being chosen as victim
|
|
|
|
backup_cnter = self.freq_cnter[invalid_idxs].clone()
|
|
|
|
self.freq_cnter.index_fill_(0, invalid_idxs, torch.max(self.freq_cnter) + 1) # or can we use a confident max value?
|
|
|
|
evict_gpu_row_idxs = self._find_evict_gpu_idxs(evict_num)
|
|
|
|
self.freq_cnter.index_copy_(0,invalid_idxs,backup_cnter)
|
|
|
|
|
2022-08-09 07:17:17 +00:00
|
|
|
evict_info = self.cached_idx_map[evict_gpu_row_idxs]
|
|
|
|
|
|
|
|
if self.buffer_size > 0:
|
|
|
|
self.limit_buff_index_copyer.index_copy(0,
|
|
|
|
src_index=evict_gpu_row_idxs,
|
|
|
|
tgt_index=evict_info.cpu(),
|
|
|
|
src=self.cuda_cached_weight.view(self.cuda_row_num, -1),
|
2022-08-12 07:55:46 +00:00
|
|
|
tgt=self.weight.view(self.num_embeddings, -1))
|
2022-08-09 07:17:17 +00:00
|
|
|
else:
|
|
|
|
# allocate tmp memory on CPU and copy rows on CUDA to CPU.
|
|
|
|
rows = self.cuda_cached_weight.view(self.cuda_row_num, -1).index_select(0, evict_gpu_row_idxs).cpu()
|
2022-08-12 07:55:46 +00:00
|
|
|
self.weight.view(self.num_embeddings, -1).index_copy_(0, evict_info.cpu(), rows)
|
2022-08-09 07:17:17 +00:00
|
|
|
|
|
|
|
self.cached_idx_map.index_fill_(0, evict_gpu_row_idxs, -1)
|
|
|
|
self.inverted_cached_idx.index_fill_(0, evict_info, -1)
|
|
|
|
self._cuda_available_row_num += evict_num
|
|
|
|
|
|
|
|
weight_size = evict_gpu_row_idxs.numel() * self.embedding_dim
|
|
|
|
self._cuda_to_cpu_elapse += timer.elapsed
|
|
|
|
self._cuda_to_cpu_numel += weight_size
|
|
|
|
# print(f"evict embedding weight: {weight_size*self.elem_size_in_byte/1e6:.2f} MB")
|
|
|
|
|
|
|
|
with Timer() as timer:
|
|
|
|
slots = torch.nonzero(self.cached_idx_map == -1).squeeze(1)[:cpu_row_idxs.numel()]
|
|
|
|
# Here also allocate extra memory on CUDA. #cpu_row_idxs
|
|
|
|
if self.buffer_size > 0:
|
|
|
|
self.limit_buff_index_copyer.index_copy(0,
|
|
|
|
src_index=cpu_row_idxs.cpu(),
|
|
|
|
tgt_index=slots,
|
2022-08-12 07:55:46 +00:00
|
|
|
src=self.weight.view(self.num_embeddings, -1),
|
2022-08-09 07:17:17 +00:00
|
|
|
tgt=self.cuda_cached_weight.view(self.cuda_row_num, -1))
|
|
|
|
else:
|
2022-08-12 07:55:46 +00:00
|
|
|
rows = self.weight.view(self.num_embeddings, -1).index_select(0, cpu_row_idxs.cpu()).cuda()
|
2022-08-09 07:17:17 +00:00
|
|
|
self.cuda_cached_weight.view(self.cuda_row_num, -1).index_copy_(0, slots, rows)
|
|
|
|
slot_offsets = slots
|
|
|
|
self.cached_idx_map[slots] = cpu_row_idxs
|
|
|
|
self.inverted_cached_idx.index_copy_(0, cpu_row_idxs, slot_offsets)
|
|
|
|
self._cuda_available_row_num -= cpu_row_idxs.numel()
|
|
|
|
self._cpu_to_cuda_elpase += timer.elapsed
|
|
|
|
weight_size = cpu_row_idxs.numel() * self.embedding_dim
|
|
|
|
self._cpu_to_cuda_numel += weight_size
|
|
|
|
# print(f"admit embedding weight: {weight_size*self.elem_size_in_byte/1e6:.2f} MB")
|
|
|
|
|
2022-08-24 09:37:22 +00:00
|
|
|
def _find_free_cuda_row(self) -> int:
|
|
|
|
if self._cuda_available_row_num == 0:
|
|
|
|
return -1
|
|
|
|
candidates = torch.nonzero(self.cached_idx_map == -1).squeeze(1)
|
|
|
|
return candidates[0].item()
|
|
|
|
|
2022-08-09 07:17:17 +00:00
|
|
|
def _evict(self) -> int:
|
|
|
|
"""
|
2022-08-24 09:37:22 +00:00
|
|
|
deprecated
|
|
|
|
|
2022-08-09 07:17:17 +00:00
|
|
|
evict one chunk from cuda to cpu.
|
|
|
|
Returns:
|
|
|
|
(int) : the slot id be evicted.
|
|
|
|
"""
|
|
|
|
mask = torch.logical_or(torch.isin(self.cached_idx_map, self.evict_backlist), self.cached_idx_map == -1)
|
|
|
|
buf = self.cached_idx_map[mask].clone()
|
|
|
|
idx = torch.nonzero(mask).squeeze(1)
|
|
|
|
self.cached_idx_map.index_fill_(0, idx, -1)
|
|
|
|
max_row, max_cpu_row_idx = torch.max(self.cached_idx_map, dim=0)
|
|
|
|
max_gpu_row_idx = self.cached_idx_map[max_cpu_row_idx]
|
|
|
|
|
|
|
|
if max_gpu_row_idx == -1:
|
|
|
|
raise RuntimeError("Can not evict a row")
|
|
|
|
|
|
|
|
max_gpu_row_idx = max_gpu_row_idx.item()
|
|
|
|
max_offset = self.inverted_cached_idx[max_gpu_row_idx]
|
|
|
|
# recover
|
|
|
|
self.cached_idx_map.index_copy_(0, idx, buf)
|
|
|
|
|
|
|
|
with Timer() as timer:
|
|
|
|
cuda_tensor = torch.narrow(self.cuda_cached_weight.view(-1), 0, max_offset * self.embedding_dim,
|
|
|
|
self.embedding_dim).view(1, self.embedding_dim)
|
|
|
|
self.cpu_weight_data(max_gpu_row_idx).data.copy_(cuda_tensor)
|
|
|
|
|
|
|
|
# update inverted_cached_idx, min_slot_id is evicted from cuda
|
|
|
|
self.cached_idx_map[max_cpu_row_idx] = -1
|
|
|
|
|
|
|
|
self.inverted_cached_idx[max_gpu_row_idx] = -1
|
|
|
|
|
|
|
|
self._cuda_available_row_num += 1
|
|
|
|
|
|
|
|
self._cuda_to_cpu_numel += self.embedding_dim
|
|
|
|
self._cuda_to_cpu_elapse += timer.elapsed
|
|
|
|
# self.num_write_back_history[-1] += 1
|
|
|
|
return max_cpu_row_idx
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def _admit(self, row_id: int):
|
|
|
|
"""
|
2022-08-24 09:37:22 +00:00
|
|
|
deprecated
|
|
|
|
|
2022-08-09 07:17:17 +00:00
|
|
|
move in row_id to CUDA
|
|
|
|
|
|
|
|
Args:
|
|
|
|
row_id (int): the id of row to be moved in
|
|
|
|
"""
|
|
|
|
# find a free slot in partial cuda weight
|
|
|
|
slot_id = self._find_free_cuda_row()
|
|
|
|
|
|
|
|
if slot_id == -1:
|
|
|
|
# evict one row
|
|
|
|
slot_id = self._evict()
|
|
|
|
slot_offset = slot_id
|
|
|
|
# copy payload from cpu to cuda
|
|
|
|
with Timer() as timer:
|
|
|
|
cuda_tensor = torch.narrow(self.cuda_cached_weight.view(-1), 0, slot_offset * self.embedding_dim,
|
|
|
|
self.embedding_dim).view(1, self.embedding_dim)
|
|
|
|
cuda_tensor.data.copy_(self.cpu_weight_data(row_id))
|
|
|
|
|
|
|
|
# update the inverted_cached_idx
|
|
|
|
self.cached_idx_map[slot_id] = row_id
|
|
|
|
self.inverted_cached_idx[row_id] = slot_offset
|
|
|
|
|
|
|
|
self._cuda_available_row_num -= 1
|
|
|
|
|
|
|
|
self._cpu_to_cuda_numel += self.embedding_dim
|
|
|
|
self._cpu_to_cuda_elpase += timer.elapsed
|