mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
3.9 KiB
98 lines
3.9 KiB
1 year ago
|
"""
|
||
|
Script for English retrieval based conversation system backed by LLaMa2
|
||
|
"""
|
||
|
import argparse
|
||
|
import os
|
||
|
|
||
|
from colossalqa.chain.retrieval_qa.base import RetrievalQA
|
||
|
from colossalqa.data_loader.document_loader import DocumentLoader
|
||
|
from colossalqa.local.llm import ColossalAPI, ColossalLLM
|
||
|
from colossalqa.prompt.prompt import PROMPT_RETRIEVAL_CLASSIFICATION_USE_CASE_ZH
|
||
|
from colossalqa.retriever import CustomRetriever
|
||
|
from colossalqa.text_splitter import ChineseTextSplitter
|
||
|
from langchain.embeddings import HuggingFaceEmbeddings
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
# Parse arguments
|
||
|
parser = argparse.ArgumentParser(description="English retrieval based conversation system backed by LLaMa2")
|
||
|
parser.add_argument("--model_path", type=str, default=None, help="path to the model")
|
||
|
parser.add_argument("--model_name", type=str, default=None, help="name of the model")
|
||
|
parser.add_argument(
|
||
|
"--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing"
|
||
|
)
|
||
|
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
if not os.path.exists(args.sql_file_path):
|
||
|
os.makedirs(args.sql_file_path)
|
||
|
|
||
|
colossal_api = ColossalAPI.get_api(args.model_name, args.model_path)
|
||
|
llm = ColossalLLM(n=1, api=colossal_api)
|
||
|
|
||
|
# Define the retriever
|
||
|
information_retriever = CustomRetriever(k=2, sql_file_path=args.sql_file_path, verbose=True)
|
||
|
|
||
|
# Setup embedding model locally
|
||
|
embedding = HuggingFaceEmbeddings(
|
||
|
model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False}
|
||
|
)
|
||
|
|
||
|
# Load data to vector store
|
||
|
print("Select files for constructing retriever")
|
||
|
documents = []
|
||
|
|
||
|
# define metadata function which is used to format the prompt with value in metadata instead of key,
|
||
|
# the later is langchain's default behavior
|
||
|
def metadata_func(data_sample, additional_fields):
|
||
|
"""
|
||
|
metadata_func (Callable[Dict, Dict]): A function that takes in the JSON
|
||
|
object extracted by the jq_schema and the default metadata and returns
|
||
|
a dict of the updated metadata.
|
||
|
|
||
|
To use key-value format, the metadata_func should be defined as follows:
|
||
|
metadata = {'value': 'a string to be used to format the prompt', 'is_key_value_mapping': True}
|
||
|
"""
|
||
|
metadata = {}
|
||
|
metadata["value"] = f"Question: {data_sample['key']}\nAnswer:{data_sample['value']}"
|
||
|
metadata["is_key_value_mapping"] = True
|
||
|
assert "value" not in additional_fields
|
||
|
assert "is_key_value_mapping" not in additional_fields
|
||
|
metadata.update(additional_fields)
|
||
|
return metadata
|
||
|
|
||
|
retriever_data = DocumentLoader(
|
||
|
[["../data/data_sample/custom_service_classification.json", "CustomerServiceDemo"]],
|
||
|
content_key="key",
|
||
|
metadata_func=metadata_func,
|
||
|
).all_data
|
||
|
|
||
|
# Split
|
||
|
text_splitter = ChineseTextSplitter()
|
||
|
splits = text_splitter.split_documents(retriever_data)
|
||
|
documents.extend(splits)
|
||
|
|
||
|
# Create retriever
|
||
|
information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding)
|
||
|
|
||
|
# Define retrieval chain
|
||
|
retrieval_chain = RetrievalQA.from_chain_type(
|
||
|
llm=llm,
|
||
|
verbose=True,
|
||
|
chain_type="stuff",
|
||
|
retriever=information_retriever,
|
||
|
chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_CLASSIFICATION_USE_CASE_ZH},
|
||
|
llm_kwargs={"max_new_tokens": 50, "temperature": 0.75, "do_sample": True},
|
||
|
)
|
||
|
# Set disambiguity handler
|
||
|
|
||
|
# Start conversation
|
||
|
while True:
|
||
|
user_input = input("User: ")
|
||
|
if "END" == user_input:
|
||
|
print("Agent: Happy to chat with you :)")
|
||
|
break
|
||
|
# 要使用和custom_service_classification.json 里的key 类似的句子做输入
|
||
|
agent_response = retrieval_chain.run(query=user_input, stop=["Human: "])
|
||
|
agent_response = agent_response.split("\n")[0]
|
||
|
print(f"Agent: {agent_response}")
|