ColossalAI/tests/test_utils/test_pipelinable.py

60 lines
1.7 KiB
Python
Raw Normal View History

import torch
import torch.multiprocessing as mp
from colossalai.utils.model.pipelinable import PipelinableContext
from colossalai.testing import rerun_on_exception
NUM_CHUNKS = 1
PIPELINE_SIZE = 2
class MLP(torch.nn.Module):
def __init__(self, dim: int = 256):
super().__init__()
intermediate_dim = dim * 4
self.dense_1 = torch.nn.Linear(dim, intermediate_dim)
self.activation = torch.nn.GELU()
self.dense_2 = torch.nn.Linear(intermediate_dim, dim)
self.dropout = torch.nn.Dropout(0.1)
def forward(self, x):
x = self.dense_1(x)
x = self.activation(x)
x = self.dense_2(x)
x = self.dropout(x)
return x
def run_pipelinable(rank):
pipelinable = PipelinableContext()
with pipelinable:
model = MLP()
assert pipelinable.policy == "balanced"
pipelinable.load_policy("uniform")
assert pipelinable.policy == "uniform"
pipelinable.to_layer_list()
assert pipelinable.layers_count == len(list(model.children()))
pipeline_model_part_0 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 0)
assert isinstance(pipeline_model_part_0, torch.nn.Module)
pipeline_model_part_1 = pipelinable.partition(NUM_CHUNKS, PIPELINE_SIZE, 1)
assert isinstance(pipeline_model_part_1, torch.nn.Module)
layers_count_in_part_0 = len(list(pipeline_model_part_0._module_list))
layers_count_in_part_1 = len(list(pipeline_model_part_1._module_list))
assert layers_count_in_part_0 + layers_count_in_part_1 == pipelinable.layers_count
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
def test_pipelinable():
mp.spawn(run_pipelinable, nprocs=1)
if __name__ == '__main__':
test_pipelinable()