ColossalAI/colossalai/fx/profiler/opcount.py

325 lines
11 KiB
Python
Raw Normal View History

# adopted from https://github.com/facebookresearch/fvcore/blob/main/fvcore/nn/jit_handles.py
# ideas from https://pastebin.com/AkvAyJBw
import operator
from functools import partial, reduce
from numbers import Number
from typing import Any, Callable, List
import torch
2022-12-20 14:40:46 +00:00
from packaging import version
aten = torch.ops.aten
def matmul_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for matmul.
"""
# Inputs should be a list of length 2.
# Inputs contains the shapes of two matrices.
input_shapes = [v.shape for v in inputs]
assert len(input_shapes) == 2, input_shapes
assert input_shapes[0][-1] == input_shapes[1][-2], input_shapes
flops = reduce(operator.mul, input_shapes[0]) * input_shapes[-1][-1]
return flops
def addmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for fully connected layers.
"""
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [v.shape for v in inputs[1:3]]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [input feature dimension, output feature dimension]
assert len(input_shapes[0]) == 2, input_shapes[0]
assert len(input_shapes[1]) == 2, input_shapes[1]
batch_size, input_dim = input_shapes[0]
output_dim = input_shapes[1][1]
flops = batch_size * input_dim * output_dim
return flops
def linear_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for the aten::linear operator.
"""
# Inputs is a list of length 3; unlike aten::addmm, it is the first
# two elements that are relevant.
input_shapes = [v.shape for v in inputs[0:2]]
# input_shapes[0]: [dim0, dim1, ..., input_feature_dim]
# input_shapes[1]: [output_feature_dim, input_feature_dim]
assert input_shapes[0][-1] == input_shapes[1][-1]
flops = reduce(operator.mul, input_shapes[0]) * input_shapes[1][0]
return flops
def bmm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for the bmm operation.
"""
# Inputs should be a list of length 2.
# Inputs contains the shapes of two tensor.
assert len(inputs) == 2, len(inputs)
input_shapes = [v.shape for v in inputs]
n, c, t = input_shapes[0]
d = input_shapes[-1][-1]
flops = n * c * t * d
return flops
def conv_flop_count(
x_shape: List[int],
w_shape: List[int],
out_shape: List[int],
transposed: bool = False,
) -> Number:
"""
Count flops for convolution. Note only multiplication is
counted. Computation for addition and bias is ignored.
Flops for a transposed convolution are calculated as
flops = (x_shape[2:] * prod(w_shape) * batch_size).
Args:
x_shape (list(int)): The input shape before convolution.
w_shape (list(int)): The filter shape.
out_shape (list(int)): The output shape after convolution.
transposed (bool): is the convolution transposed
Returns:
int: the number of flops
"""
batch_size = x_shape[0]
conv_shape = (x_shape if transposed else out_shape)[2:]
flops = batch_size * reduce(operator.mul, w_shape) * reduce(operator.mul, conv_shape)
return flops
def conv_flop_jit(inputs: List[Any], outputs: List[Any]):
"""
Count flops for convolution.
"""
x, w = inputs[:2]
x_shape, w_shape, out_shape = (x.shape, w.shape, outputs[0].shape)
transposed = inputs[6]
return conv_flop_count(x_shape, w_shape, out_shape, transposed=transposed)
def transpose_shape(shape):
return [shape[1], shape[0]] + list(shape[2:])
def conv_backward_flop_jit(inputs: List[Any], outputs: List[Any]):
grad_out_shape, x_shape, w_shape = [i.shape for i in inputs[:3]]
output_mask = inputs[-1]
fwd_transposed = inputs[7]
flop_count = 0
if output_mask[0]:
grad_input_shape = outputs[0].shape
flop_count += conv_flop_count(grad_out_shape, w_shape, grad_input_shape, not fwd_transposed)
if output_mask[1]:
grad_weight_shape = outputs[1].shape
flop_count += conv_flop_count(transpose_shape(x_shape), grad_out_shape, grad_weight_shape, fwd_transposed)
return flop_count
def norm_flop_counter(affine_arg_index: int, input_arg_index: int) -> Callable:
"""
Args:
affine_arg_index: index of the affine argument in inputs
"""
def norm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for norm layers.
"""
# Inputs[0] contains the shape of the input.
input_shape = inputs[input_arg_index].shape
has_affine = inputs[affine_arg_index].shape is not None if hasattr(inputs[affine_arg_index],
'shape') else inputs[affine_arg_index]
assert 2 <= len(input_shape) <= 5, input_shape
# 5 is just a rough estimate
flop = reduce(operator.mul, input_shape) * (5 if has_affine else 4)
return flop
return norm_flop_jit
def batchnorm_flop_jit(inputs: List[Any], outputs: List[Any], training: bool = None) -> Number:
if training is None:
training = inputs[-3]
assert isinstance(training, bool), "Signature of aten::batch_norm has changed!"
if training:
return norm_flop_counter(1, 0)(inputs, outputs) # pyre-ignore
has_affine = inputs[1].shape is not None
input_shape = reduce(operator.mul, inputs[0].shape)
return input_shape * (2 if has_affine else 1)
def elementwise_flop_counter(input_scale: float = 1, output_scale: float = 0) -> Callable:
"""
Count flops by
input_tensor.numel() * input_scale + output_tensor.numel() * output_scale
Args:
input_scale: scale of the input tensor (first argument)
output_scale: scale of the output tensor (first element in outputs)
"""
def elementwise_flop(inputs: List[Any], outputs: List[Any]) -> Number:
ret = 0
if input_scale != 0:
shape = inputs[0].shape
ret += input_scale * reduce(operator.mul, shape) if shape else 0
if output_scale != 0:
shape = outputs[0].shape
ret += output_scale * reduce(operator.mul, shape) if shape else 0
return ret
return elementwise_flop
def zero_flop_jit(*args):
"""
Count flops for zero flop layers.
"""
return 0
2022-12-20 14:40:46 +00:00
if version.parse(torch.__version__) >= version.parse('1.12.0'):
flop_mapping = {
# gemm
2022-12-20 14:40:46 +00:00
aten.mm.default: matmul_flop_jit,
aten.matmul.default: matmul_flop_jit,
aten.addmm.default: addmm_flop_jit,
aten.bmm.default: bmm_flop_jit,
# convolution
2022-12-20 14:40:46 +00:00
aten.convolution.default: conv_flop_jit,
aten._convolution.default: conv_flop_jit,
aten.convolution_backward.default: conv_backward_flop_jit,
# normalization
2022-12-20 14:40:46 +00:00
aten.native_batch_norm.default: batchnorm_flop_jit,
aten.native_batch_norm_backward.default: batchnorm_flop_jit,
aten.cudnn_batch_norm.default: batchnorm_flop_jit,
aten.cudnn_batch_norm_backward.default: partial(batchnorm_flop_jit, training=True),
aten.native_layer_norm.default: norm_flop_counter(2, 0),
aten.native_layer_norm_backward.default: norm_flop_counter(2, 0),
# pooling
2022-12-20 14:40:46 +00:00
aten.avg_pool1d.default: elementwise_flop_counter(1, 0),
aten.avg_pool2d.default: elementwise_flop_counter(1, 0),
aten.avg_pool2d_backward.default: elementwise_flop_counter(0, 1),
aten.avg_pool3d.default: elementwise_flop_counter(1, 0),
aten.avg_pool3d_backward.default: elementwise_flop_counter(0, 1),
aten.max_pool1d.default: elementwise_flop_counter(1, 0),
aten.max_pool2d.default: elementwise_flop_counter(1, 0),
aten.max_pool3d.default: elementwise_flop_counter(1, 0),
aten.max_pool1d_with_indices.default: elementwise_flop_counter(1, 0),
aten.max_pool2d_with_indices.default: elementwise_flop_counter(1, 0),
aten.max_pool2d_with_indices_backward.default: elementwise_flop_counter(0, 1),
aten.max_pool3d_with_indices.default: elementwise_flop_counter(1, 0),
aten.max_pool3d_with_indices_backward.default: elementwise_flop_counter(0, 1),
aten._adaptive_avg_pool2d.default: elementwise_flop_counter(1, 0),
aten._adaptive_avg_pool2d_backward.default: elementwise_flop_counter(0, 1),
aten._adaptive_avg_pool3d.default: elementwise_flop_counter(1, 0),
aten._adaptive_avg_pool3d_backward.default: elementwise_flop_counter(0, 1),
aten.embedding_dense_backward.default: elementwise_flop_counter(0, 1),
aten.embedding.default: elementwise_flop_counter(1, 0),
}
elementwise_flop_aten = [
# basic op
2022-12-20 14:40:46 +00:00
aten.add.Tensor,
aten.add_.Tensor,
aten.div.Tensor,
aten.div_.Tensor,
aten.div.Scalar,
aten.div_.Scalar,
aten.mul.Tensor,
aten.mul.Scalar,
aten.mul_.Tensor,
aten.neg.default,
aten.pow.Tensor_Scalar,
aten.rsub.Scalar,
aten.sum.default,
aten.sum.dim_IntList,
aten.mean.dim,
# activation op
2022-12-20 14:40:46 +00:00
aten.hardswish.default,
aten.hardswish_.default,
aten.hardswish_backward.default,
aten.hardtanh.default,
aten.hardtanh_.default,
aten.hardtanh_backward.default,
aten.hardsigmoid_backward.default,
aten.hardsigmoid.default,
aten.gelu.default,
aten.gelu_backward.default,
aten.silu.default,
aten.silu_.default,
aten.silu_backward.default,
aten.sigmoid.default,
aten.sigmoid_backward.default,
aten._softmax.default,
aten._softmax_backward_data.default,
aten.relu_.default,
aten.relu.default,
aten.tanh.default,
aten.tanh_backward.default,
aten.threshold_backward.default,
# dropout
2022-12-20 14:40:46 +00:00
aten.native_dropout.default,
aten.native_dropout_backward.default,
]
for op in elementwise_flop_aten:
flop_mapping[op] = elementwise_flop_counter(1, 0)
# TODO: this will be removed in future
zero_flop_aten = [
aten.as_strided.default,
aten.as_strided_.default,
aten.bernoulli_.float,
aten.cat.default,
aten.clone.default,
aten.copy_.default,
aten.detach.default,
aten.expand.default,
aten.empty_like.default,
aten.new_empty.default,
aten.new_empty_strided.default,
aten.ones_like.default,
aten._reshape_alias.default,
aten.select.int,
aten.select_backward.default,
aten.squeeze.dim,
aten.slice.Tensor,
aten.slice_backward.default,
aten.split.Tensor,
aten.permute.default,
aten.t.default,
aten.transpose.int,
aten._to_copy.default,
aten.unsqueeze.default,
aten.unbind.int,
aten._unsafe_view.default,
aten.view.default,
aten.where.self,
aten.zero_.default,
aten.zeros_like.default,
]
for op in zero_flop_aten:
flop_mapping[op] = zero_flop_jit
else:
flop_mapping = {}
elementwise_flop_aten = {}
zero_flop_aten = {}